Skip to main content

Roles of Tomosyn in Neurotransmitter Release

  • Chapter
  • First Online:
Presynaptic Terminals

Abstract

SNARE complexes and synaptotagmin mediate synaptic vesicle fusion with the plasma membrane of the active zone for the neurotransmitter release from presynaptic nerve terminals responding to neuronal signals. Many regulatory proteins for the SNARE complex formation have been identified. Among them, our originally identified protein, tomosyn, is likely to be a key molecule for the regulation of the SNARE complex-involved pre-fusion step and the Ca2+-triggered synaptic vesicle fusion step. Tomosyn inhibits SNARE complex formation and thereby inhibits synaptic vesicle fusion by sequestering target SNAREs through its C-terminal VAMP-like domain in a Ca2+-independent manner. The N-terminal WD40 repeats are the site for its binding to synaptotagmin-1, a Ca2+-sensor protein, in a Ca2+-dependent manner. The interaction negatively regulates the Ca2+-dependent synaptic vesicle fusion mediated by synaptotagmin-1. Thus, tomosyn is a potent inhibitor, temporally and stepwisely regulating the synaptic vesicle fusion at the active zone, for the synchronized and fast neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashery U, Bielopolski N, Barak B, Yizhar O (2009) Friends and foes in synaptic transmission: the role of tomosyn in vesicle priming. Trends Neurosci 32:275–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Augustine GJ (2001) How does calcium trigger neurotransmitter release? Curr Opin Neurobiol 11:320–326

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Sakisaka T, Mochida S, Takai Y (2005) PKA-catalyzed phosphorylation of tomosyn and its implication in Ca2+-dependent exocytosis of neurotransmitter. J Cell Biol 170:1113–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  CAS  PubMed  Google Scholar 

  • Bollmann JH, Sakmann B, Borst JG (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:953–957

    Article  CAS  PubMed  Google Scholar 

  • Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77:615–641

    Article  CAS  PubMed  Google Scholar 

  • Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106

    Article  CAS  PubMed  Google Scholar 

  • Felmy F, Neher E, Schneggenburger R (2003) The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential. Proc Natl Acad Sci U S A 100:15200–15205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez I, Araç D, Ubach J, Gerber SH, Shin O, Gao Y, Anderson RG, Südhof TC, Rizo J (2001) Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 32:1057–1069

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, Kotani H, Yokoyama S, Nishioka H, Matsuura Y, Mizoguchi A, Scheller RH, Takai Y (1998) Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20:905–915

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Kanno E, Mikoshiba K (1999) Conserved N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X. J Biol Chem 274:31421–31427

    Article  CAS  PubMed  Google Scholar 

  • Gangar A, Rossi G, Andreeva A, Hales R, Brennwald P (2005) Structurally conserved interaction of Lgl family with SNAREs is critical to their cellular function. Curr Biol 15:1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    Article  CAS  PubMed  Google Scholar 

  • Gracheva EO, Burdina AO, Holgado AM, Berthelot-Grosjean M, Ackley BD, Hadwiger G, Nonet ML, Weimer RM, Richmond JE (2006) Tomosyn negatively regulates CAPS-dependent peptide release at Caenorhabditis elegans synapses. PLoS Biol 4:e261

    Article  PubMed Central  PubMed  Google Scholar 

  • Groffen AJ, Jacobsen L, Schut D, Verhage M (2005) Two distinct genes drive expression of seven tomosyn isoforms in the mammalian brain, sharing a conserved structure with a unique variable domain. J Neurochem 92:554–568

    Article  CAS  PubMed  Google Scholar 

  • Harata N, Pyle JL, Aravanis AM, Mozhayeva M, Kavalali ET, Tsien RW (2001) Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci 24:637–643

    Article  CAS  PubMed  Google Scholar 

  • Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R (2003) The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J Biol Chem 278:31159–31166

    Article  CAS  PubMed  Google Scholar 

  • Hattendorf DA, Andreeva A, Gangar A, Brennwald PJ, Weis WI (2007) Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism. Nature 446:567–571

    Article  CAS  PubMed  Google Scholar 

  • Hui E, Johnson CP, Yao J, Dunning FM, Chapman ER (2009) Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell 138:709–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  CAS  PubMed  Google Scholar 

  • Kagami M, Toh-e A, Matsui Y (1998) Sro7p, a Saccharomyces cerevisiae counterpart of the tumor suppressor l(2)gl protein, is related to myosins in function. Genetics 149:1717–1727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kloepper TH, Kienle CN, Fasshauer D (2008) SNAREing the basis of multicellularity: consequences of protein family expansion during evolution. Mol Biol Evol 25:2055–2068

    Article  CAS  PubMed  Google Scholar 

  • Lehman K, Rossi G, Adamo JE, Brennwald P (1999) Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J Cell Biol 146:125–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma H, Cai Q, Lu W, Sheng ZH, Mochida S (2009) KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons. J Neurosci 29:13019–13029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martens S, Kozlov MM, McMahon HT (2007) How synaptotagmin promotes membrane fusion. Science 316:1205–1208

    Article  CAS  PubMed  Google Scholar 

  • McEwen JM, Madison JM, Dybbs M, Kaplan JM (2006) Antagonistic regulation of synaptic vesicle priming by Tomosyn and UNC-13. Neuron 51:303–315

    Article  CAS  PubMed  Google Scholar 

  • Meinrenken CJ, Borst JG, Sakmann B (2002) Calcium secretion coupling at calyx of held governed by nonuniform channel-vesicle topography. J Neurosci 22:1648–1667

    CAS  PubMed  Google Scholar 

  • Müsch A, Cohen D, Yeaman C, Nelson WJ, Rodriguez-Boulan E, Brennwald PJ (2002) Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol Biol Cell 13:158–168

    Article  PubMed  Google Scholar 

  • Pobbati AV, Razeto A, Boddener M, Becker S, Fasshauer D (2004) Structural basis for the inhibitory role of tomosyn in exocytosis. J Biol Chem 279:47192–47200

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan A, Stein A, Jahn R, Fasshauer D (2009) The Ca2+ affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate. J Biol Chem 284:25749–25760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15:665–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzoli SO, Betz WJ (2004) The structural organization of the readily releasable pool of synaptic vesicles. Science 303:2037–2039

    Article  CAS  PubMed  Google Scholar 

  • Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57–69

    Article  CAS  PubMed  Google Scholar 

  • Sakaba T, Schneggenburger R, Neher E (2002) Estimation of quantal parameters at the calyx of Held synapse. Neurosci Res 44:343–356

    Article  PubMed  Google Scholar 

  • Sakisaka T, Baba T, Tanaka S, Izumi G, Yasumi M, Takai Y (2004) Regulation of SNAREs by tomosyn and ROCK: implication in extension and retraction of neurites. J Cell Biol 166:17–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakisaka T, Yamamoto Y, Mochida S, Nakamura M, Nishikawa K, Ishizaki H, Okamoto-Tanaka M, Miyoshi J, Fujiyoshi Y, Manabe T, Takai Y (2008) Dual inhibition of SNARE complex formation by tomosyn ensures controlled neurotransmitter release. J Cell Biol 183:323–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schikorski T, Stevens CF (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci 4:391–395

    Article  CAS  PubMed  Google Scholar 

  • Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15:266–274

    Article  CAS  PubMed  Google Scholar 

  • Shao X, Fernandez I, Südhof TC, Rizo J (1998) Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry 37:16106–16115

    Article  CAS  PubMed  Google Scholar 

  • Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418

    Article  PubMed  Google Scholar 

  • Stein A, Radhakrishnan A, Riedel D, Fasshauer D, Jahn R (2007) Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat Struct Mol Biol 14:904–911

    Article  CAS  PubMed  Google Scholar 

  • Südhof TC (2000) The synaptic vesicle cycle revisited. Neuron 28:317–320

    Article  PubMed  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  • Sutton RB, Davletov BA, Berghuis AM, Südhof TC, Sprang SR (1995) Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80:929–938

    Article  CAS  PubMed  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395:347–353

    Article  CAS  PubMed  Google Scholar 

  • Trimble WS, Cowan DM, Scheller RH (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A 85:4538–4542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  PubMed  Google Scholar 

  • Wirtz-Peitz F, Knoblich JA (2006) Lethal giant larvae take on a life of their own. Trends Cell Biol 16:234–241

    Article  CAS  PubMed  Google Scholar 

  • Xue M, Ma C, Craig TK, Rosenmund C, Rizo J (2008) The Janus-faced nature of the C2B domain is fundamental for synaptotagmin-1 function. Nat Struct Mol Biol 15:1160–1168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto Y, Mochida S, Kurooka T, Sakisaka T (2009) Reciprocal intramolecular interactions of tomosyn control its inhibitory activity on SNARE complex formation. J Biol Chem 284:12480–12490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto Y, Mochida S, Miyazaki N, Kawai K, Fujikura K, Kurooka T, Iwasaki K, Sakisaka T (2010a) Tomosyn inhibits synaptotagmin-1-mediated step of Ca2+-dependent neurotransmitter release through its N-terminal WD40 repeats. J Biol Chem 285:40943–40955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto Y, Fujikura K, Sakaue M, Okimura K, Kobayashi Y, Nakamura T, Sakisaka T (2010b) The tail domain of tomosyn controls membrane fusion through tomosyn displacement by VAMP2. Biochem Biophys Res Commun 399:24–30

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Ohno S (2008) Role of Lgl/Dlg/Scribble in the regulation of epithelial junction, polarity and growth. Front Biosci 13:6693–6707

    Article  CAS  PubMed  Google Scholar 

  • Yizhar O, Matti U, Melamed R, Hagalili Y, Bruns D, Rettig J, Ashery U (2004) Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner. Proc Natl Acad Sci U S A 101:2578–2583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yizhar O, Lipstein N, Gladycheva SE, Matti U, Ernst SA, Rettig J, Stuenkel EL, Ashery U (2007) Multiple functional domains are involved in tomosyn regulation of exocytosis. J Neurochem 103:604–616

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Sakisaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yamamoto, Y., Sakisaka, T. (2015). Roles of Tomosyn in Neurotransmitter Release. In: Mochida, S. (eds) Presynaptic Terminals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55166-9_5

Download citation

Publish with us

Policies and ethics