Skip to main content

Zinc Signal in Brain Functions

  • Chapter
  • First Online:
Zinc Signals in Cellular Functions and Disorders

Abstract

Brain zinc homeostasis is strictly controlled under healthy conditions, indicating the importance of zinc for physiological functions in the brain. Zinc in the synaptic vesicles is released from glutamatergic (zincergic) neuron terminals and serves as a signal factor (Zn2+ signal) in the intracellular (cytosol) compartment, in addition to the extracellular compartment. The synaptic Zn2+ signal is dynamically linked to neurotransmission and participates in synaptic plasticity such as long-term potentiation (LTP) and cognitive function. The hypothalamic-pituitary-adrenal (HPA) axis activity, that is, glucocorticoid secretion, is linked to cognitive function and can potentiate glutamatergic neuron activity. The modification of synaptic Zn2+ signal by the HPA axis activity, which is enhanced by stress and aging, is likely to be linked to cognitive function. On the other hand, abnormal Zn2+ influx into postsynaptic neurons, which is induced by the abnormal glutamatergic (zincergic) neuron activity, induces neuronal death and is involved in neurological disorders such as stroke/ischemia, temporal lobe epilepsy, Alzheimer’s disease, and amyotrophic lateral sclerosis. Therefore, the homeostasis of synaptic Zn2+ signal is critical in both functional and pathological aspects. This chapter summarizes the physiological significance of intracellular Zn2+ signaling in brain functions, especially in cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23

    PubMed  Google Scholar 

  • Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636

    PubMed  CAS  Google Scholar 

  • Aguilar-Alonso P, Martinez-Fong D, Pazos-Salazar NG, Brambila E, Gonzalez-Barrios JA, Mejorada A, Flores G, Millan-Perezpeña L, Rubio H, Leon-Chavez BA (2008) The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat. Brain Res 1200:89–98

    PubMed  CAS  Google Scholar 

  • Arana GW, Baldessarini RJ, Ornsteen M (1985) The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Arch Gen Psychiatry 42:1193–1204

    PubMed  CAS  Google Scholar 

  • Assaf SY, Chung S-H (1984) Release of endogeneous Zn2+ from brain tissue during activity. Nature (Lond) 308:734–735

    CAS  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    PubMed  CAS  Google Scholar 

  • Bancila V, Nikonenko I, Dunant Y, Bloc A (2004) Zinc inhibits glutamate release via activation of pre-synaptic KATP channels and reduces ischaemic damage in rat hippocampus. J Neurochem 90:1243–1250

    PubMed  CAS  Google Scholar 

  • Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228

    PubMed  CAS  Google Scholar 

  • Belloni-Olivi L, Marshall C, Laal B, Andrews GK, Bressler J (2009) Localization of zip1 and zip4 mRNA in the adult rat brain. J Neurosci Res 87:3221–3230

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Casoli T, Di Stefano G, Giorgetti B, Balietti M (2008) Brain aging: the zinc connection. Exp Gerontol 43:389–393

    PubMed  CAS  Google Scholar 

  • Billard JM (2006) Ageing, hippocampal synaptic activity and magnesium. Magnes Res 19:199–215

    PubMed  CAS  Google Scholar 

  • Black MM (1998) Zinc deficiency and child development. Am J Clin Nutr 68:464S–469S

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bobilya DJ, Gauthier NA, Karki S, Olley BJ, Thomas WK (2008) Longitudinal changes in zinc transport kinetics, metallothionein and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment. J Nutr Biochem 19:129–137

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    PubMed  CAS  Google Scholar 

  • Brown KH, Wuehler SE, Peerson JM (2001) The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull 22:113–125

    Google Scholar 

  • Brureau A, Zussy C, Delair B, Ogier C, Ixart G, Maurice T, Givalois L (2013) Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer’s disease rat model. Neurobiol Aging 34:1426–1439

    PubMed  CAS  Google Scholar 

  • Bryan J, Osendarp S, Hughes D, Calvaresi E, Baghurst K, van Klinken JW (2004) Nutrients for cognitive development in school-aged children. Nutr Rev 62:295–306

    PubMed  Google Scholar 

  • Bush AI (2013) The metal theory of Alzheimer’s disease. J Alzheimers Dis 33:S277–S281

    PubMed  Google Scholar 

  • Capasso M, Jeng JM, Malavolta M, Mocchegiani E, Sensi SL (2005) Zinc dyshomeostasis: a key modulator of neuronal injury. J Alzheimers Dis 8:93–108

    PubMed  CAS  Google Scholar 

  • Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AA, Haskett RF, James NM, Kronfol Z, Lohr N, Steiner M, de Vigne JP, Young E (1981) A specific laboratory test for the diagnosis of melancholia: standardization, validation and clinical utility. Arch Gen Psychiatry 38:15–22

    PubMed  CAS  Google Scholar 

  • Chowanadisai W, Kelleher SL, Lönnerdal B (2005) Zinc deficiency is associated with increased brain zinc import and LIV-1 expression and decreased ZnT-1 expression in neonatal rats. J Nutr 135:1002–1007

    PubMed  CAS  Google Scholar 

  • Cohen-Kfir E, Lee W, Eskandari S, Nelson N (2005) Zinc inhibition of gamma-aminobutyric acid transporter 4 (GAT4) reveals a link between excitatory and inhibitory neurotransmission. Proc Natl Acad Sci USA 102:6154–6159

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cole CR, Lifshitz F (2008) Zinc nutrition and growth retardation. Pediatr Endocrinol Rev 5:889–896

    PubMed  Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96:1716–1721

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cole TB, Martyanova A, Palmiter RD (2001) Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse. Brain Res 891:253–265

    PubMed  CAS  Google Scholar 

  • Colvin RA, Fontaine CP, Laskowski M, Thomas D (2003) Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 479:171–185

    PubMed  CAS  Google Scholar 

  • Colvin RA, Laskowski M, Fontaine CP (2006) Zinquin identifies subcellular compartmentalization of zinc in cortical neurons. Relation to the trafficking of zinc and the mitochondrial compartment. Brain Res 1085:1–10

    PubMed  CAS  Google Scholar 

  • Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR (2008) Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol 294:C726–C742

    PubMed  CAS  Google Scholar 

  • Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61

    PubMed  CAS  Google Scholar 

  • Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089

    PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    PubMed  CAS  Google Scholar 

  • Danscher G, Stoltenberg M (2005) Zinc-specific autometallographic in vivo selenium methods: tracing of zinc-enriched (ZEN) terminals, ZEN pathways, and pools of zinc ions in a multitude of other ZEN cells. J Histochem Cytochem 53:141–153

    PubMed  CAS  Google Scholar 

  • Deshpande A, Kawai H, Metherate R, Glabe CG, Busciglio J (2009) A role for synaptic zinc in activity-dependent A-beta oligomer formation and accumulation at excitatory synapses. J Neurosci 29:4004–4015

    PubMed  CAS  Google Scholar 

  • Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    PubMed  CAS  PubMed Central  Google Scholar 

  • During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    PubMed  CAS  Google Scholar 

  • Emmetsberger J, Mirrione MM, Zhou C, Fernandez-Monreal M, Siddiq MM, Ji K, Tsirka SE (2010) Tissue plasminogen activator alters intracellular sequestration of zinc through interaction with the transporter ZIP4. J Neurosci 30:6538–6547

    PubMed  CAS  PubMed Central  Google Scholar 

  • Foster TC (2007) Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell 6:319–325

    PubMed  CAS  Google Scholar 

  • Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Danscher G (1990) Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res 83:71–84

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    PubMed  CAS  Google Scholar 

  • Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, Valdenebro M, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198:285–293

    PubMed  CAS  Google Scholar 

  • Friedlich AL, Lee JY, van Groen T, Cherny RA, Volitakis I, Cole TB, Palmiter RD, Koh JY, Bush AI (2004) Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J Neurosci 24:3453–3459

    PubMed  CAS  Google Scholar 

  • Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3:662–674

    PubMed  CAS  Google Scholar 

  • Fukahori M, Itoh M (1990) Effects of dietary zinc status on seizure susceptibility and hippocampal zinc content in the El (epilepsy) mouse. Brain Res 529:16–22

    PubMed  CAS  Google Scholar 

  • Hansen AJ, Zeuthen T (1980) Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:437–445

    Google Scholar 

  • Hershey CO, Hershey LA, Varnes A, Vibhakar SD, Lavin P, Strain WH (1983) Cerebrospinal fluid trace element content in dementia: clinical, radiologic, and pathologic correlations. Neurology 33:1350–1353

    PubMed  CAS  Google Scholar 

  • Holsboer F (1983) The dexamethasone suppression test in depressed patients: clinical and biochemical aspects. J Steroid Biochem 19:251–257

    PubMed  CAS  Google Scholar 

  • Howland JG, Wang YT (2008) Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res 169:145–158

    PubMed  CAS  Google Scholar 

  • Jia Y, Jeng JM, Sensi S, Weiss JH (2002) Zn2+ currents are mediated by calcium-permeable AMPA/kainite channels in cultured murine hippocampal neurons. J Physiol (Lond) 543:35–48

    CAS  Google Scholar 

  • JoĂ«ls M (2007) Role of corticosteroid hormones in the dentate gyrus. Prog Brain Res 163:355–370

    PubMed  Google Scholar 

  • JoĂ«ls M (2008) Functional actions of corticosteroids in the hippocampus. Eur J Pharmacol 583:312–321

    PubMed  Google Scholar 

  • JoĂ«ls M, Karst H, DeRijk R, de Kloet ER (2008) The coming out of the brain mineralocorticoid receptor. Trends Neurosci 31:1–7

    PubMed  Google Scholar 

  • Johansson PA, Dziegielewska KM, Liddelow SA, Saunders NR (2008) The blood–CSF barrier explained: when development is not immaturity. Bioessays 30:237–248

    PubMed  CAS  Google Scholar 

  • Karst H, Berger S, Turiault M, Tronche F, SchĂĽtz G, JoĂ«ls M (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci USA 102:19204–19207

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kay AR (2003) Evidence for chelatable zinc in the extracellular space of the hippocampus, but little evidence for synaptic release of Zn. J Neurosci 23:6847–6855

    PubMed  CAS  Google Scholar 

  • King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130:1360S–1366S

    PubMed  CAS  Google Scholar 

  • Landfield PW, Eldridge JC (1994) Evolving aspects of the glucocorticoid hypothesis of brain aging: hormonal modulation of neuronal calcium homeostasis. Neurobiol Aging 15:579–588

    PubMed  CAS  Google Scholar 

  • Lee JY, Cole TB, Palmiter RD, Suh SW, Koh JY (2002) Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci USA 99:7705–7710

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee JY, Kim JS, Byun HR, Palmiter RD, Koh JY (2011) Dependence of the histofluorescently reactive zinc pool on zinc transporter-3 in the normal brain. Brain Res 1418:12–22

    PubMed  CAS  Google Scholar 

  • Lee JY, Cho E, Seo JW, Hwang JJ, Koh JY (2012) Alteration of the cerebral zinc pool in a mouse model of Alzheimer disease. J Neuropathol Exp Neurol 71:211–222

    PubMed  CAS  Google Scholar 

  • Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS, Fu Y, Liu F, Lu Y (2004) Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43:43–55

    PubMed  Google Scholar 

  • Maes M, D’Haese PC, ScharpĂ© S, D’Hondt P, Cosyns P, De Broe ME (1994) Hypozincemia in depression. J Affect Disord 31:135–140

    PubMed  CAS  Google Scholar 

  • Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209:2304–2311

    PubMed  CAS  Google Scholar 

  • Magneson GR, Puvathingal JM, Ray WJ Jr (1987) The concentrations of free Mg2+ and free Zn2+ in equine blood plasma. J Biol Chem 262:11140–11148

    PubMed  CAS  Google Scholar 

  • Maret W, Sandstead HH (2008) Possible roles of zinc nutriture in the fetal origins of disease. Exp Gerontol 43:378–381

    PubMed  CAS  Google Scholar 

  • Markesbery WR, Ehmann WD, Alauddin M, Hossain TIM (1984) Brain trace element concentrations in aging. Neurobiol Aging 5:19–28

    PubMed  CAS  Google Scholar 

  • Martel G, Hevi C, Friebely O, Baybutt T, Shumyatsky GP (2010) Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear. Learn Mem 17:582–590

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martel G, Hevi C, Kane-Goldsmith N, Shumyatsky GP (2011) Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear. Behav Brain Res 223:233–238

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    PubMed  CAS  Google Scholar 

  • Minami A, Sakurada N, Fuke S, Kikuchi K, Nagano T, Oku N, Takeda A (2006) Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation. J Neurosci Res 83:167–176

    PubMed  CAS  Google Scholar 

  • Mirescu C, Gould E (2006) Stress and adult neurogenesis. Hippocampus 16:233–238

    PubMed  CAS  Google Scholar 

  • Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75:367–390

    PubMed  CAS  Google Scholar 

  • Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, Bonifacino T, Mallei A, Baldelli P, Racagni G, Raiteri M, Benfenati F, Bonanno G, Popoli M (2010) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One 5:e8566

    PubMed  PubMed Central  Google Scholar 

  • Nakashima AS, Dyck RH (2009) Zinc and cortical plasticity. Brain Res Rev 59:347–373

    PubMed  CAS  Google Scholar 

  • Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV (2005) Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 102:12230–12235

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nolte C, Gore A, Sekler I, Kresse W, Hershfinkel M, Hoffmann A, Kettenmann H, Moran A (2004) ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 48:145–155

    PubMed  Google Scholar 

  • Nowak G, Szewczyk B, Pilc A (2005) Zinc and depression. An update. Pharmacol Rep 57:713–718

    PubMed  CAS  Google Scholar 

  • Ohinata K, Takemoto M, Kawanago M, Fushimi S, Shirakawa H, Goto T, Asakawa A, Komai M (2009) Orally administered zinc increases food intake via vagal stimulation in rats. J Nutr 139:611–616

    PubMed  CAS  Google Scholar 

  • Ozawa H (2005) Steroid hormones, their receptors and neuroendocrine system. J Nippon Med School 72:316–325

    CAS  Google Scholar 

  • Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934–14939

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saito T, Takahashi K, Nakagawa N, Hosokawa T, Kurasaki M, Yamanoshita O, Yamamoto Y, Sasaki H, Nagashima K, Fujita H (2000) Deficiencies of hippocampal Zn and ZnT3 accelerate brain aging of rat. Biochem Biophys Res Commun 279:505–511

    PubMed  CAS  Google Scholar 

  • Sandi C (2011) Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends Neurosci 34:165–176

    PubMed  CAS  Google Scholar 

  • Seed JA, Dixon RA, McCluskey SE, Young AH (2000) Basal activity of the hypothalamic-pituitary-adrenal axis and cognitive function in anorexia nervosa. Eur Arch Psychiatry Clin Neurosci 250:11–15

    PubMed  CAS  Google Scholar 

  • Sekler I, Moran A, Hershfinkel M, Dori A, Margulis A, Birenzweig N, Nitzan Y, Silverman WF (2002) Distribution of the zinc transporter ZnT-1 in comparison with chelatable zinc in the mouse brain. J Comp Neurol 447:201–209

    PubMed  CAS  Google Scholar 

  • Sensi SL, Canzoniero LMT, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 15:9554–9564

    Google Scholar 

  • Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci USA 100:6157–6162

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci USA 108:3366–3370

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smart TG, Xie X, Krishek BJ (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42:393–441

    PubMed  CAS  Google Scholar 

  • Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature (Lond) 476:458–461

    CAS  Google Scholar 

  • Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32:756–765

    PubMed  CAS  Google Scholar 

  • Stoltenberg M, Bush AI, Bach G, Smidt K, Larsen A, Rungby J, Lund S, Doering P, Danscher G (2007) Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency. Neuroscience 150:357–369

    PubMed  CAS  Google Scholar 

  • Stork CJ, Li YV (2010) Zinc release from thapsigargin/IP3-sensitive stores in cultured cortical neurons. J Mol Signal 5:5

    PubMed  PubMed Central  Google Scholar 

  • Suh SW, Won SJ, Hamby AM, Fan Y, Sheline CT, Tamano H, Takeda A, Liu J (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab 29:1579–1588

    PubMed  CAS  Google Scholar 

  • Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148

    PubMed  CAS  Google Scholar 

  • Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–352

    PubMed  CAS  Google Scholar 

  • Takeda A (2011a) Insight into glutamate excitotoxicity from synaptic zinc homeostasis. Int J Alzheimers Dis 2011:491597

    PubMed Central  Google Scholar 

  • Takeda A (2011b) Zinc signaling in the hippocampus and its relation to pathogenesis of depression. Mol Neurobiol 44:167–174

    Google Scholar 

  • Takeda A, Tamano H (2009) Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev 62:33–34

    PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H (2010) Zinc signaling through glucocorticoid and glutamate signaling in stressful circumstances. J Neurosci Res 88:3002–3010

    PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H (2012) Proposed glucocorticoid-mediated zinc signaling in the hippocampus. Metallomics 4:614–618

    PubMed  CAS  Google Scholar 

  • Takeda A, Akiyama T, Sawashita J, Okada S (1994a) Brain uptake of trace metals, zinc and manganese, in rats. Brain Res 640:341–344

    PubMed  CAS  Google Scholar 

  • Takeda A, Sawashita J, Okada S (1994b) Localization in rat brain of the trace metals, zinc and manganese, after intracerebroventricular injection. Brain Res 658:252–254

    PubMed  CAS  Google Scholar 

  • Takeda A, Sawashita J, Okada S (1995) Biological half-lives of zinc and manganese in rat brain. Brain Res 695:53–58

    PubMed  CAS  Google Scholar 

  • Takeda A, Minami A, Takefuta S, Tochigi M, Oku N (2001) Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. J Neurosci Res 63:447–452

    PubMed  CAS  Google Scholar 

  • Takeda A, Hirate M, Tamano H, Oku N (2003a) Release of glutamate and GABA in the hippocampus under zinc deficiency. J Neurosci Res 72:537–542

    PubMed  CAS  Google Scholar 

  • Takeda A, Hirate M, Tamano H, Nishibaba D, Oku N (2003b) Susceptibility to kainate-induced seizures under dietary zinc deficiency. J Neurochem 85:1575–1580

    PubMed  CAS  Google Scholar 

  • Takeda A, Hirate M, Tamano H, Oku N (2003c) Zinc movement in the brain under kainite-induced seizures. Epilepsy Res 54:123–129

    PubMed  CAS  Google Scholar 

  • Takeda A, Minami A, Seki Y, Oku N (2003d) Inhibitory function of zinc against excitation of hippocampal glutamatergic neurons. Epilepsy Res 57:169–174

    PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H, Tochigi M, Oku N (2005a) Zinc homeostasis in the hippocampus of zinc-deficient young adult rats. Neurochem Int 46:221–225

    PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H, Oku N (2005b) Involvement of unusual glutamate release in kainate-induced seizures in zinc-deficient adult rats. Epilepsy Res 66:137–143

    PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H, Nagayoshi A, Yamada K, Oku N (2005c) Increase in hippocampal cell death after treatment with kainate in zinc deficiency. Neurochem Int 47:539–544

    PubMed  CAS  Google Scholar 

  • Takeda A, Itoh H, Tamano H, Oku N (2006a) Responsiveness to kainate in young rats after 2-week zinc deprivation. Biometals 19:565–572

    PubMed  CAS  Google Scholar 

  • Takeda A, Itoh H, Imano S, Oku N (2006b) Impairment of GABAergic neurotransmitter system in the amygdala of young rats after 4-week zinc deprivation. Neurochem Int 49:746–750

    PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H, Kan F, Itoh H, Oku N (2007a) Anxiety-like behavior of young rats after 2-week zinc deprivation. Behav Brain Res 177:1–6

    PubMed  CAS  Google Scholar 

  • Takeda A, Fuke S, Minami A, Oku N (2007b) Role of zinc influx via AMPA/kainate receptor activation in metabotropic glutamate receptor-mediated calcium release. J Neurosci Res 85:1310–1317

    PubMed  CAS  Google Scholar 

  • Takeda A, Fuke S, Tsutsumi W, Oku N (2007c) Negative modulation of presynaptic activity by zinc released from Schaffer collaterals. J Neurosci Res 85:3666–3672

    PubMed  CAS  Google Scholar 

  • Takeda A, Minami A, Sakurada N, Nakajima S, Oku N (2007d) Response of hippocampal mossy fiber zinc to excessive glutamate release. Neurochem Int 50:322–327

    PubMed  CAS  Google Scholar 

  • Takeda A, Yamada K, Tamano H, Fuke S, Kawamura M, Oku N (2008) Hippocampal calcium dyshomeostasis and long-term potentiation in 2-week zinc deficiency. Neurochem Int 52:241–246

    PubMed  CAS  Google Scholar 

  • Takeda A, Itoh H, Nagayoshi A, Oku N (2009) Abnormal calcium mobilization in hippocampal slices of epileptic animals fed a zinc-deficient diet. Epilepsy Res 83:73–80

    PubMed  CAS  Google Scholar 

  • Takeda A, Takada S, Ando M, Itagaki K, Tamano H, Suzuki M, Iwaki H, Oku N (2010a) Neuroscience 171:443–450

    PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H, Imano S, Oku N (2010b) Increases in extracellular zinc in the amygdala in acquisition and recall of fear experience and their roles in response to fear. Neuroscience 168:715–722

    PubMed  CAS  Google Scholar 

  • Takeda A, Takada S, Nakamura M, Suzuki M, Tamano H, Ando M, Oku N (2011) Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit. PLoS One 6:e28615

    PubMed  CAS  PubMed Central  Google Scholar 

  • Takeda A, Tamano H, Ogawa T, Takada S, Ando M, Oku N, Watanabe M (2012a) Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res 226:259–264

    PubMed  CAS  Google Scholar 

  • Takeda A, Suzuki M, Tamano H, Takada S, Ide K, Oku N (2012b) Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress. Neurochem Int 60:394–399

    PubMed  CAS  Google Scholar 

  • Takeda A, Nakamura M, Fujii H, Tamano H (2013a) Synaptic Zn2+ homeostasis and its significance. Metallomics 5:417–423

    PubMed  CAS  Google Scholar 

  • Takeda A, Iida M, Ando M, Nakamura M, Tamano H, Oku N (2013b) Enhanced susceptibility to spontaneous seizures of Noda epileptic rats by loss of synaptic Zn2+. PLoS One 8:e71374

    Google Scholar 

  • Tamano H, Kan F, Kawamura M, Oku N, Takeda A (2009) Behavior in the forced swim test and neurochemical changes in the hippocampus in young rats after 2-week zinc deprivation. Neurochem Int 55:536–541

    PubMed  CAS  Google Scholar 

  • Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N, Ikegaya Y (2002) Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-d-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158:215–220

    PubMed  CAS  PubMed Central  Google Scholar 

  • Valente T, Auladell C (2002) Developmental expression of ZnT3 in mouse brain: correlation between the vesicular zinc transporter protein and chelatable vesicular zinc (CVZ) cells. Glial and neuronal CVZ cells interact. Mol Cell Neurosci 21:189–204

    PubMed  CAS  Google Scholar 

  • Valente T, Auladell C, PĂ©rez-Clausell J (2002) Postnatal development of zinc-rich terminal fields in the brain of the rat. Exp Neurol 174:215–229

    PubMed  CAS  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biological basis of zinc physiology. Physiol Rev 73:79–118

    PubMed  CAS  Google Scholar 

  • Venero C, Borrell J (1999) Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur J Neurosci 11:2465–2473

    PubMed  CAS  Google Scholar 

  • Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    PubMed  CAS  Google Scholar 

  • Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY, Magistretti PJ, Pellerin L (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37:275–286

    PubMed  CAS  Google Scholar 

  • Weiss JH (2011) Ca permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci 4:42

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss JH, Sensi SL, Koh JY (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    PubMed  CAS  Google Scholar 

  • Whiteford HA, Peabody CA, Thiemann S, Kraemer HC, Csernansky JG, Berger PA (1987) The effect of age on baseline and postdexamethasone cortisol levels in major depressive disorder. Biol Psychiatry 22:1029–1032

    PubMed  CAS  Google Scholar 

  • Wong TP, Howland JG, Robillard JM, Ge Y, Yu W, Titterness AK, Brebner K, Liu L, Weinberg J, Christie BR, Phillips AG, Wang YT (2007) Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc Natl Acad Sci USA 104:11471–11476

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yokel RA (2006) Blood–brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10:223–253

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Takeda, A. (2014). Zinc Signal in Brain Functions. In: Fukada, T., Kambe, T. (eds) Zinc Signals in Cellular Functions and Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55114-0_8

Download citation

Publish with us

Policies and ethics