Skip to main content

Chronic Pain and Body Experience: Neuroscientific Basis and Implications For Treatment

  • Chapter
  • First Online:
Clinical Systems Neuroscience

Abstract

The perception of one’s own body requires the involvement of several sensory modalities. The integration of somatosensory and visual input is considered to be the prerequisite for higher-order body experience such as ownership and agency, ultimately accompanied by a sense of self. The sense of self has been shown to be altered in chronic pain patients. The extensive interactions between the senses, including nociception, might offer a powerful tool to treat chronic pain syndromes. Thus, the induction of bodily illusions and the examination of their influence on pain perception have been examined using various imaging methods. Moreover, this knowledge has been used to treat chronic pain syndromes such as phantom limb pain or regional complex pain syndrome using, for example, mirror treatment or prosthesis use. This chapter gives an overview of recent developments on body illusions and pain and provides suggestions on how they might lead to novel and effective treatments not only in neuropathic pain but for chronic pain in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsakiris M (2010) My body in the brain: a neurocognitive model of body-ownership. Neuropsychologia 48:703–712

    PubMed  Google Scholar 

  2. Synofzik M, Vosgerau G, Newen A (2008) I move, therefore I am: a new theoretical framework to investigate agency and ownership. Conscious Cogn 17:411–424

    PubMed  Google Scholar 

  3. Lotze M, Moseley GL (2007) Role of distorted body image in pain. Curr Rheumatol Rep 9:488–496

    PubMed  Google Scholar 

  4. Schwoebel J, Friedman R, Duda N et al (2001) Pain and the body schema: evidence for peripheral effects on mental representations of movement. Brain 124:2098–2104

    CAS  PubMed  Google Scholar 

  5. Förderreuther S, Sailer U, Straube A (2004) Impaired self-perception of the hand in complex regional pain syndrome (CRPS). Pain 110:756–761

    PubMed  Google Scholar 

  6. Ehde DM, Czerniecki JM, Smith DG et al (2000) Chronic phantom sensations, phantom pain, residual limb pain, and other regional pain after lower limb amputation. Arch Phys Med Rehabil 81:1039–1044

    CAS  PubMed  Google Scholar 

  7. Ephraim PL, Wegener ST, MacKenzie EJ et al (2005) Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. Arch Phys Med Rehabil 86:1910–1919

    PubMed  Google Scholar 

  8. Hanley MA, Ehde DM, Jensen M et al (2009) Chronic pain associated with upper-limb loss. Am J Phys Med Rehabil 88:742–751

    PubMed Central  PubMed  Google Scholar 

  9. Kern U, Busch V, Rockland M et al (2009) Prevalence and risk factors of phantom limb pain and phantom limb sensations in Germany. A nationwide field survey. Schmerz 23:479–488

    CAS  PubMed  Google Scholar 

  10. Kooijman CM, Dijkstra PU, Geertzen JH et al (2000) Phantom pain and phantom sensations in upper limb amputees: an epidemiological study. Pain 87:33–41

    CAS  PubMed  Google Scholar 

  11. Sherman RA, Sherman CJ (1983) Prevalence and characteristics of chronic phantom limb pain among American veterans. Results of a trial survey. Am J Phys Med 62:227–238

    CAS  PubMed  Google Scholar 

  12. Wartan SW, Hamann W, Wedley JR et al (1997) Phantom pain and sensation among British veteran amputees. Br J Anaesth 78:652–659

    CAS  PubMed  Google Scholar 

  13. Altschuler EL, Hu J (2008) Mirror therapy in a patient with a fractured wrist and no active wrist extension. Scand J Plast Reconstr Surg Hand Surg 42:110–111

    PubMed  Google Scholar 

  14. Cacchio A, De Blasis E, De Blasis V et al (2009) Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke patients. Neurorehabil Neural Repair 23:792–799

    PubMed  Google Scholar 

  15. Chan BL, Witt R, Charrow AP et al (2007) Mirror therapy for phantom limb pain. N Engl J Med 357:2206–2207

    CAS  PubMed  Google Scholar 

  16. Foell J, Bekrater-Bodmann R, Diers M et al (2014) Mirror therapy for phantom limb pain: brain changes and the role of body representation. Eur J Pain 18:729–739

    CAS  PubMed  Google Scholar 

  17. Michielsen ME, Smits M, Ribbers GM et al (2011) The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual illusions in patients with stroke. J Neurol Neurosurg Psychiatry 82:393–398

    PubMed  Google Scholar 

  18. Ramachandran VS, Rogers-Ramachandran D (1996) Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci 263:377–386

    CAS  PubMed  Google Scholar 

  19. Diers M, Zieglgänsberger W, Trojan J et al (2013) Site-specific visual feedback reduces pain perception. Pain 154:890–896

    PubMed  Google Scholar 

  20. Cole J, Crowle S, Austwick G et al (2009) Exploratory findings with virtual reality for phantom limb pain; from stump motion to agency and analgesia. Disabil Rehabil 31:846–854

    PubMed  Google Scholar 

  21. Eng K, Siekierka E, Pyk P et al (2007) Interactive visuo-motor therapy system for stroke rehabilitation. Med Biol Eng Comput 45:901–907

    PubMed  Google Scholar 

  22. Lotze M, Grodd W, Birbaumer N et al (1999) Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? Nat Neurosci 2:501–502

    CAS  PubMed  Google Scholar 

  23. Weiss T, Miltner WH, Adler T et al (1999) Decrease in phantom limb pain associated with prosthesis-induced increased use of an amputation stump in humans. Neurosci Lett 272:131–134

    CAS  PubMed  Google Scholar 

  24. Kalckert A, Ehrsson HH (2012) Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front Hum Neurosci 6:40

    PubMed Central  PubMed  Google Scholar 

  25. Ferri F, Frassinetti F, Ardizzi M et al (2012) A sensorimotor network for the bodily self. J Cogn Neurosci 24:1584–1595

    PubMed  Google Scholar 

  26. Gentile G, Petkova VI, Ehrsson HH (2011) Integration of visual and tactile signals from the hand in the human brain: an FMRI study. J Neurophysiol 105:910–922

    PubMed Central  PubMed  Google Scholar 

  27. Makin TR, Holmes NP, Zohary E (2007) Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. J Neurosci 27:731–740

    CAS  PubMed  Google Scholar 

  28. Bolognini N, Maravita A (2007) Proprioceptive alignment of visual and somatosensory maps in the posterior parietal cortex. Curr Biol 17:1890–1895

    CAS  PubMed  Google Scholar 

  29. Ehrsson HH, Spence C, Passingham RE (2004) That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877

    CAS  PubMed  Google Scholar 

  30. Ehrsson HH, Holmes NP, Passingham RE (2005) Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J Neurosci 25:10564–10573

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ehrsson HH, Wiech K, Weiskopf N et al (2007) Threatening a rubber hand that you feel is yours elicits a cortical anxiety response. Proc Natl Acad Sci USA 104:9828–9833

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Lloyd D, Morrison I, Roberts N (2006) Role for human posterior parietal cortex in visual processing of aversive objects in peripersonal space. J Neurophysiol 95:205–214

    PubMed  Google Scholar 

  33. Graziano MS, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266:1054–1057

    CAS  PubMed  Google Scholar 

  34. Graziano MS (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA 96:10418–10421

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Ro T, Wallace R, Hagedorn J et al (2004) Visual enhancing of tactile perception in the posterior parietal cortex. J Cogn Neurosci 16:24–30

    PubMed  Google Scholar 

  36. Lloyd DM, Shore DI, Spence C et al (2003) Multisensory representation of limb position in human premotor cortex. Nat Neurosci 6:17–18

    CAS  PubMed  Google Scholar 

  37. Caminiti R, Johnson PB, Galli C et al (1991) Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. J Neurosci 11:1182–1197

    CAS  PubMed  Google Scholar 

  38. Graziano MS, Cooke DF, Taylor CS (2000) Coding the location of the arm by sight. Science 290:1782–1786

    CAS  PubMed  Google Scholar 

  39. Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391:756

    CAS  PubMed  Google Scholar 

  40. Longo MR, Schüür F, Kammers MP et al (2008) What is embodiment? A psychometric approach. Cognition 107:978–998

    PubMed  Google Scholar 

  41. Moseley GL, Olthof N, Venema A et al (2008) Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proc Natl Acad Sci USA 105:13169–13173

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Barnsley N, McAuley JH, Mohan R et al (2011) The rubber hand illusion increases histamine reactivity in the real arm. Curr Biol 21:R945–R946

    CAS  PubMed  Google Scholar 

  43. Armel KC, Ramachandran VS (2003) Projecting sensations to external objects: evidence from skin conductance response. Proc Biol Sci 270:1499–1506

    PubMed Central  PubMed  Google Scholar 

  44. Bekrater-Bodmann R, Foell J, Diers M et al (2012) The perceptual and neuronal stability of the rubber hand illusion across contexts and over time. Brain Res 1452:130–139

    CAS  PubMed  Google Scholar 

  45. Petkova VI, Björnsdotter M, Gentile G et al (2011) From part-to whole-body ownership in the multisensory brain. Curr Biol 21:1118–1122

    CAS  PubMed  Google Scholar 

  46. Makin TR, Holmes NP, Ehrsson HH (2008) On the other hand: dummy hands and peripersonal space. Behav Brain Res 191:1–10

    PubMed  Google Scholar 

  47. Lopez C, Lenggenhager B, Blanke O (2010) How vestibular stimulation interacts with illusory hand ownership. Conscious Cogn 19:33–47

    PubMed  Google Scholar 

  48. Tsakiris M, Costantini M, Haggard P (2008) The role of the right temporo-parietal junction in maintaining a coherent sense of one’s body. Neuropsychologia 46:3014–3018

    PubMed  Google Scholar 

  49. Press C, Heyes C, Haggard P et al (2008) Visuotactile learning and body representation: an ERP study with rubber hands and rubber objects. J Cogn Neurosci 20:312–323

    PubMed Central  PubMed  Google Scholar 

  50. Schaefer M, Flor H, Heinze HJ et al (2007) Morphing the body: illusory feeling of an elongated arm affects somatosensory homunculus. Neuroimage 36:700–705

    PubMed  Google Scholar 

  51. Tsakiris M, Hesse MD, Boy C et al (2007) Neural signatures of body ownership: a sensory network for bodily self-consciousness. Cereb Cortex 17:2235–2244

    PubMed  Google Scholar 

  52. Balslev D, Nielsen FA, Paulson OB et al (2004) Right temporoparietal cortex activation during visuo-proprioceptive conflict. Cereb Cortex 15:166–169

    PubMed  Google Scholar 

  53. Bernier PM, Burle B, Vidal F et al (2009) Direct evidence for cortical suppression of somatosensory afferents during visuomotor adaptation. Cereb Cortex 19:2106–2113

    PubMed  Google Scholar 

  54. Shimada S, Hiraki K, Oda I (2005) The parietal role in the sense of self-ownership with temporal discrepancy between visual and proprioceptive feedbacks. Neuroimage 24:1225–1232

    PubMed  Google Scholar 

  55. Ma WJ, Pouget A (2008) Linking neurons to behavior in multisensory perception: a computational review. Brain Res 1242:4–12

    CAS  PubMed  Google Scholar 

  56. Stein BE, Meredith MA (1993) The merging of the senses. MIT, Cambridge

    Google Scholar 

  57. Moseley GL, Gallace A, Spence C (2012) Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neurosci Biobehav Rev 36:34–46

    PubMed  Google Scholar 

  58. Knecht S, Sörös P, Gürtler S et al (1998) Phantom sensations following acute pain. Pain 77:209–213

    CAS  PubMed  Google Scholar 

  59. Gandevia SC, Phegan CM (1999) Perceptual distortions of the human body image produced by local anaesthesia, pain and cutaneous stimulation. J Physiol 514:609–616

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Hodges PW, Moseley GL, Gabrielsson A et al (2003) Experimental muscle pain changes feedforward postural responses of the trunk muscles. Exp Brain Res 151:262–271

    PubMed  Google Scholar 

  61. Weerakkody NS, Blouin JS, Taylor JL et al (2008) Local subcutaneous and muscle pain impairs detection of passive movements at the human thumb. J Physiol 586:3183–3193

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Paqueron X, Leguen M, Rosenthal D et al (2003) The phenomenology of body image distortions induced by regional anaesthesia. Brain 126:702–712

    CAS  PubMed  Google Scholar 

  63. Silva S, Bataille B, Jucla M et al (2010) Temporal analysis of regional anaesthesia-induced sensorimotor dysfunction: a model for understanding phantom limb pain. Br J Anaesth 105:208–213

    CAS  PubMed  Google Scholar 

  64. Bromage PR, Melzack R (1974) Phantom limbs and the body schema. Can Anaesth Soc J 21:267–274

    CAS  PubMed  Google Scholar 

  65. Melzack R, Bromage PR (1973) Experimental phantom limbs. Exp Neurol 39:261–269

    CAS  PubMed  Google Scholar 

  66. Melzack R (1990) Phantom limbs and the concept of a neuromatrix. Trends Neurosci 13:88–92

    CAS  PubMed  Google Scholar 

  67. Melzack R (1999) From the gate to the neuromatrix. Pain Suppl 6:121–126

    Google Scholar 

  68. Moseley GL (2003) A pain neuromatrix approach to patients with chronic pain. Man Ther 8:130–140

    CAS  PubMed  Google Scholar 

  69. Acerra NE, Moseley GL (2005) Dysynchiria: watching the mirror image of the unaffected limb elicits pain on the affected side. Neurology 65:751–753

    PubMed  Google Scholar 

  70. Maihöfner C, Neundörfer B, Birklein F, Handwerker HO (2006) Mislocalization of tactile stimulation in patients with complex regional pain syndrome. J Neurol 253:772–779

    PubMed  Google Scholar 

  71. Moseley GL (2008) I can’t find it! Distorted body image and tactile dysfunction in patients with chronic back pain. Pain 140:239–243

    PubMed  Google Scholar 

  72. Lewis JS, Kersten P, McPherson KM et al (2010) Wherever is my arm? Impaired upper limb position accuracy in complex regional pain syndrome. Pain 149:463–469

    PubMed  Google Scholar 

  73. Moseley G (2005) Distorted body image in complex regional pain syndrome. Neurology 65:773

    PubMed  Google Scholar 

  74. Giummarra MJ, Georgiou-Karistianis N, Nicholls ME et al (2010) Corporeal awareness and proprioceptive sense of the phantom. Br J Psychol 101:791–808

    PubMed  Google Scholar 

  75. Diers M, Christmann C, Koeppe C et al (2010) Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. Pain 149:296–304

    PubMed  Google Scholar 

  76. Flor H, Braun C, Elbert T et al (1997) Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 224:5–8

    CAS  PubMed  Google Scholar 

  77. Grüsser SM, Winter C, Schaefer M et al (2001) Perceptual phenomena after unilateral arm amputation: a pre-post-surgical comparison. Neurosci Lett 302:13–16

    PubMed  Google Scholar 

  78. Juottonen K, Gockel M, Silén T et al (2002) Altered central sensorimotor processing in patients with complex regional pain syndrome. Pain 98:315–323

    PubMed  Google Scholar 

  79. Montoya P, Ritter K, Huse E et al (1998) The cortical somatotopic map and phantom phenomena in subjects with congenital limb atrophy and traumatic amputees with phantom limb pain. Eur J Neurosci 10:1095–1102

    CAS  PubMed  Google Scholar 

  80. Vartiainen NV, Kirveskari E, Forss N (2008) Central processing of tactile and nociceptive stimuli in complex regional pain syndrome. Clin Neurophysiol 119:2380–2388

    PubMed  Google Scholar 

  81. Vartiainen N, Kirveskari E, Kallio-Laine K et al (2009) Cortical reorganization in primary somatosensory cortex in patients with unilateral chronic pain. J Pain 10:854–859

    PubMed  Google Scholar 

  82. Birbaumer N, Lutzenberger W, Montoya P et al (1997) Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci 17:5503–5508

    CAS  PubMed  Google Scholar 

  83. Flor H, Elbert T, Knecht S et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484

    CAS  PubMed  Google Scholar 

  84. Karl A, Birbaumer N, Lutzenberger W et al (2001) Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci 21:3609–3618

    CAS  PubMed  Google Scholar 

  85. Karl A, Mühlnickel W, Kurth R et al (2004) Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain. Pain 110:90–102

    PubMed  Google Scholar 

  86. Lotze M, Flor H, Grodd W et al (2001) Phantom movements and pain. An fMRI study in upper limb amputees. Brain 124:2268–2277

    CAS  PubMed  Google Scholar 

  87. Maihöfner C, Handwerker HO, Neundörfer B et al (2003) Patterns of cortical reorganization in complex regional pain syndrome. Neurology 61:1707–1715

    PubMed  Google Scholar 

  88. Maihöfner C, Handwerker HO, Neundörfer B et al (2004) Cortical reorganization during recovery from complex regional pain syndrome. Neurology 63:693–701

    PubMed  Google Scholar 

  89. MacIver K, Lloyd DM, Kelly S et al (2008) Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain 131:2181–2191

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Pleger B, Tegenthoff M, Schwenkreis P et al (2004) Mean sustained pain levels are linked to hemispherical side-to-side differences of primary somatosensory cortex in the complex regional pain syndrome I. Exp Brain Res 155:115–119

    PubMed  Google Scholar 

  91. Wrigley PJ, Press SR, Gustin SM et al (2009) Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. J Pain 141:52–59

    CAS  Google Scholar 

  92. Cronholm B (1951) Phantom limbs in amputees; a study of changes in the integration of centripetal impulses with special reference to referred sensations. Acta Psychiatr Neurol Scand Suppl 72:1–310

    CAS  PubMed  Google Scholar 

  93. Grüsser SM, Winter C, Mühlnickel W et al (2001) The relationship of perceptual phenomena and cortical reorganization in upper extremity amputees. Neuroscience 102:263–272

    PubMed  Google Scholar 

  94. Flor H, Nikolajsen L, Staehelin Jensen T (2006) Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 7:873–881

    CAS  PubMed  Google Scholar 

  95. Fitzgibbon BM, Enticott PG, Rich AN et al (2010) High incidence of ‘synaesthesia for pain’ in amputees. Neuropsychologia 48:3675–3678

    PubMed  Google Scholar 

  96. Giummarra MJ, Fitzgibbon BM, Georgiou-Karistianis N et al (2010) Ouch! My phantom leg jumps/hurts when you stab “my” virtual hand. Perception 39:1396–1407

    PubMed  Google Scholar 

  97. Fitzgibbon BM, Giummarra MJ, Georgiou-Karistianis N et al (2010) Shared pain: from empathy to synaesthesia. Neurosci Biobehav Rev 34:500–512

    PubMed  Google Scholar 

  98. Harris AJ (1999) Cortical origin of pathological pain. Lancet 354:1464–1466

    CAS  PubMed  Google Scholar 

  99. Fink GR, Marshall JC, Halligan PW et al (1999) The neural consequences of conflict between intention and the senses. Brain 122:497–512

    PubMed  Google Scholar 

  100. McCabe CS, Haigh RC, Halligan PW et al (2005) Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of pain. Rheumatology 44:509–516

    CAS  PubMed  Google Scholar 

  101. Della-Morte D, Rundek T (2012) Dizziness and vertigo. Front Neurol Neurosci 30:22–25

    PubMed  Google Scholar 

  102. Daenen L, Nijs J, Roussel N et al (2012) Altered perception of distorted visual feedback occurs soon after whiplash injury: an experimental study of central nervous system processing. Pain Physician 15:405–413

    PubMed  Google Scholar 

  103. McCabe CS, Cohen H, Blake DR (2007) Somaesthetic disturbances in fibromyalgia are exaggerated by sensory motor conflict: implications for chronicity of the disease? Rheumatology 46:1587–1592

    CAS  PubMed  Google Scholar 

  104. Moseley GL, Gandevia SC (2005) Sensory-motor incongruence and reports of ‘pain’. Rheumatology 44:1083–1085

    CAS  PubMed  Google Scholar 

  105. Moseley GL, McCormick K, Hudson M et al (2006) Disrupted cortical proprioceptive representation evokes symptoms of peculiarity, foreignness and swelling, but not pain. Rheumatology 45:196–200

    CAS  PubMed  Google Scholar 

  106. Foell J, Bekrater-Bodmann R, McCabe CS et al (2013) Sensorimotor incongruence and body perception: an experimental investigation. Front Hum Neurosci 7:310

    PubMed Central  PubMed  Google Scholar 

  107. Longo MR, Betti V, Aglioti SM et al (2009) Visually induced analgesia: seeing the body reduces pain. J Neurosci 29:12125–12130

    CAS  PubMed  Google Scholar 

  108. Longo MR, Iannetti GD, Mancini F et al (2012) Linking pain and the body: neural correlates of visually induced analgesia. J Neurosci 32:2601–2607

    CAS  PubMed  Google Scholar 

  109. Mancini F, Longo MR, Kammers MP et al (2011) Visual distortion of body size modulates pain perception. Psychol Sci 22:325–330

    PubMed  Google Scholar 

  110. Moseley GL, Parsons TJ, Spence C (2008) Visual distortion of a limb modulates the pain and swelling evoked by movement. Curr Biol 18:R1047–R1048

    CAS  PubMed  Google Scholar 

  111. Ramachandran VS, Brang D, McGeoch PD (2009) Size reduction using mirror visual feedback (MVF) reduces phantom pain. Neurocase 15:357–360

    CAS  PubMed  Google Scholar 

  112. Blankenburg F, Ruff CC, Deichmann R et al (2006) The cutaneous rabbit illusion affects human primary sensory cortex somatotopically. PLoS Biol 4:e69

    PubMed Central  PubMed  Google Scholar 

  113. Chen LM, Friedman RM, Roe AW (2003) Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science 302:881–885

    CAS  PubMed  Google Scholar 

  114. Bekrater-Bodmann R, Foell J, Flor H (2011) Relationship between bodily illusions and pain syndromes. Pain Manag 1:217–228

    PubMed  Google Scholar 

  115. Flor H (2008) Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev Neurother 8:809–818

    PubMed  Google Scholar 

  116. Tsakiris M, Schütz-Bosbach S, Gallagher S (2007) On agency and body-ownership: phenomenological and neurocognitive reflections. Conscious Cogn 16:645–660

    PubMed  Google Scholar 

  117. Dummer T, Picot-Annand A, Neal T et al (2009) Movement and the rubber hand illusion. Perception 38:271–280

    PubMed  Google Scholar 

  118. Kammers MP, de Vignemont F, Verhagen L et al (2009) The rubber hand illusion in action. Neuropsychologia 47:204–211

    CAS  PubMed  Google Scholar 

  119. Hunter JP, Katz J, Davis KD (2003) The effect of tactile and visual sensory inputs on phantom limb awareness. Brain 126:579–589

    PubMed  Google Scholar 

  120. Tsakiris M, Carpenter L, James D et al (2010) Hands only illusion: multisensory integration elicits sense of ownership for body parts but not for non-corporeal objects. Exp Brain Res 204:343–352

    PubMed  Google Scholar 

  121. Tsakiris M, Haggard P (2005) The rubber hand illusion revisited: visuotactile integration and self-attribution. J Exp Psychol Hum Percept Perform 31:80–91

    PubMed  Google Scholar 

  122. Costantini M, Haggard P (2007) The rubber hand illusion: sensitivity and reference frame for body ownership. Conscious Cogn 16:229–240

    PubMed  Google Scholar 

  123. Lloyd DM (2007) Spatial limits on referred touch to an alien limb may reflect boundaries of visuo-tactile peripersonal space surrounding the hand. Brain Cogn 64:104–109

    PubMed  Google Scholar 

  124. Longo M, Schüür F, Kammers MP et al (2009) Self awareness and the body image. Acta Psychol 132:166–172

    Google Scholar 

  125. Shimada S, Fukuda K, Hiraki K (2009) Rubber hand illusion under delayed visual feedback. PLoS One 4:e6185

    PubMed Central  PubMed  Google Scholar 

  126. Bekrater-Bodmann R, Foell J, Diers M et al (2014) The importance of synchrony and temporal order of visual and tactile input for illusory limb ownership experiences - an FMRI study applying virtual reality. PLoS One 9:e87013

    PubMed Central  PubMed  Google Scholar 

  127. Ramachandran VS, Rogers-Ramachandran D, Cobb S (1995) Touching the phantom limb. Nature 377:489–490

    CAS  PubMed  Google Scholar 

  128. MacLachlan M, McDonald D, Waloch J (2004) Mirror treatment of lower limb phantom pain: a case study. Disabil Rehabil 26:901–904

    PubMed  Google Scholar 

  129. Darnall BD (2009) Self-delivered home-based mirror therapy for lower limb phantom pain. Am J Phys Med Rehabil 88:78–81

    PubMed  Google Scholar 

  130. Darnall BD, Li H (2012) Home-based self-delivered mirror therapy for phantom pain: a pilot study. J Rehabil Med 44:254–260

    PubMed  Google Scholar 

  131. Mercier C, Sirigu A (2009) Training with virtual visual feedback to alleviate phantom limb pain. Neurorehabil Neural Repair 23:587–594

    PubMed  Google Scholar 

  132. Bultitude JH, Rafal RD (2010) Derangement of body representation in complex regional pain syndrome: report of a case treated with mirror and prisms. Exp Brain Res 204:409–418

    PubMed Central  PubMed  Google Scholar 

  133. Ezendam D, Bongers RM, Jannink MJ (2009) Systematic review of the effectiveness of mirror therapy in upper extremity function. Disabil Rehabil 31:2135–2149

    PubMed  Google Scholar 

  134. McCabe CS, Haigh RC, Ring EF et al (2003) A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1). Rheumatology 42:97–101

    CAS  PubMed  Google Scholar 

  135. Cauda F, D’Agata F, Sacco K et al (2009) Altered resting state attentional networks in diabetic neuropathic pain. J Neurol Neurosurg Psychiatry 81:806–811

    PubMed  Google Scholar 

  136. Dunckley P, Wise RG, Aziz Q et al (2005) Cortical processing of visceral and somatic stimulation: Differentiating pain intensity from unpleasantness. Neuroscience 133:533–542

    CAS  PubMed  Google Scholar 

  137. Uematsu H, Shibata M, Miyauchi S et al (2011) Brain imaging of mechanically induced muscle versus cutaneous pain. Neurosci Res 70:78–84

    PubMed  Google Scholar 

  138. Farrer C, Franck N, Georgieff N et al (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18:324–333

    CAS  PubMed  Google Scholar 

  139. Yomogida Y, Sugiura M, Sassa Y et al (2010) The neural basis of agency: an fMRI study. Neuroimage 50:198–207

    PubMed  Google Scholar 

  140. Ramachandran VS, Hirstein W (1998) The perception of phantom limbs. The D O Hebb lecture Brain 121:1603–1630

    Google Scholar 

  141. Brodie EE, Whyte A, Niven CA (2007) Analgesia through the looking glass? A randomized controlled trial investigating the effect of viewing a ‘virtual’ limb upon phantom limb pain, sensation and movement. Eur J Pain 11:428–436

    PubMed  Google Scholar 

  142. Casale R, Alaa L, Mallick M et al (2010) Phantom limb related phenomena and their rehabilitation after lower limb amputation. Eur J Phys Rehabil Med 45:559–566

    Google Scholar 

  143. Brodie EE, Whyte A, Waller B (2003) Increased motor control of a phantom leg in humans results from the visual feedback of a virtual leg. Neurosci Lett 341:167–169

    CAS  PubMed  Google Scholar 

  144. Touzalin-Chretin P, Dufour A (2008) Motor cortex activation induced by a mirror: evidence from lateralized readiness potentials. J Neurophysiol 100:19–23

    Google Scholar 

  145. Touzalin-Chretin P, Ehrler S, Dufour A (2009) Visual feedback of a hand prepared to move modulates cortical motor activity. Neuroreport 20:1361–1365

    Google Scholar 

  146. Slater M, Perez-Marcos D, Ehrsson HH et al (2008) Towards a digital body: the virtual arm illusion. Front Hum Neurosci 2:6

    PubMed Central  PubMed  Google Scholar 

  147. Hägni K, Eng K, Hepp-Reymond MC et al (2008) Observing virtual arms that you imagine are yours increases the galvanic skin response to an unexpected threat. PLoS One 3:e3082

    PubMed Central  PubMed  Google Scholar 

  148. Perez-Marcos D, Slater M, Sanchez-Vives MV (2009) Inducing a virtual hand ownership illusion through a brain-computer interface. Neuroreport 20:589–594

    PubMed  Google Scholar 

  149. Trojan J, Diers M, Fuchs X et al (2013) An augmented reality home-training system based on the mirror training and imagery approach. Behav Res Methods. doi:10.3758/s13428-013-0412-4

    PubMed Central  Google Scholar 

  150. Slater M, Spanlang B, Sanchez-Vives MV et al (2010) First person experience of body transfer in virtual reality. PLoS One 5:e10564

    PubMed Central  PubMed  Google Scholar 

  151. Martini M, Perez-Marcos D, Sanchez-Vives MV (2014) Modulation of pain threshold by virtual body ownership. Eur J Pain. doi:10.1002/j.1532-2149.2014.00451.x

    Google Scholar 

  152. Murray CD, Pettifer S, Howard T et al (2007) The treatment of phantom limb pain using immersive virtual reality: three case studies. Disabil Rehabil 29:1465–1469

    PubMed  Google Scholar 

  153. Sato K, Fukumori S, Matsusaki T et al (2010) Nonimmersive virtual reality mirror visual feedback therapy and its application for the treatment of complex regional pain syndrome: an open-label pilot study. Pain Med 11:622–629

    PubMed  Google Scholar 

  154. Ramachandran VS, Seckel EL (2010) Using mirror visual feedback and virtual reality to treat fibromyalgia. Med Hypotheses 75:495–496

    CAS  PubMed  Google Scholar 

  155. Gaggioli A, Amoresano A, Gruppioni E et al (2010) A myoelectric-controlled virtual hand for the assessment and treatment of phantom limb pain in trans-radial upper extremity amputees: a research protocol. Stud Health Technol Inform 154:220–222

    PubMed  Google Scholar 

  156. Giummarra MJ, Georgiou-Karistianis N, Nicholls ME et al (2010) The phantom in the mirror: a modified rubber-hand illusion in amputees and normals. Perception 39:103–118

    PubMed  Google Scholar 

  157. McDonnel PM, Scott RN, Dickison J et al (1989) Do artificial limbs become part of the user? New evidence. J Rehabil Res Dev 26:17–24

    Google Scholar 

  158. Hunter JP, Katz J, Davis KD (2008) Stability of phantom limb phenomena after upper limb amputation: a longitudinal study. Neuroscience 156:939–949

    CAS  PubMed  Google Scholar 

  159. De Preester H, Tsakiris M (2009) Body-extension versus body-incorporation: is there need for a body-model? Phenom Cogn Sci 8:307–319

    Google Scholar 

  160. Biddiss E, Chau T (2007) Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil 86:977–987

    PubMed  Google Scholar 

  161. Ehrsson HH, Rosén B, Stockselius A et al (2008) Upper limb amputees can be induced to experience a rubber hand as their own. Brain 131:3443–3452

    PubMed Central  PubMed  Google Scholar 

  162. Marasco PD, Kim K, Colgate JE et al (2011) Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134:747–758

    PubMed Central  PubMed  Google Scholar 

  163. D‘Alonzo M, Cipriani C (2012) Vibrotactile sensory substitution elicits feeling of ownership of an alien hand. PLoS One 7:e50756

    PubMed Central  PubMed  Google Scholar 

  164. Schmalzl L, Kalckert A, Ragnö C et al (2014) Neural correlates of the rubber hand illusion in amputees: a report of two cases. Neurocase 20:407–420

    PubMed Central  PubMed  Google Scholar 

  165. Brozzoli C, Gentile G, Ehrsson HH (2012) That’s near my hand! Parietal and premotor coding of hand-centered space contributes to localization and self-attribution of the hand. J Neurosci 32:14573–14582

    CAS  PubMed  Google Scholar 

  166. Bekrater-Bodmann R, Foell J (2013) Limb ownership experience and peripersonal space processing. J Neurosci 33:2729–2731

    CAS  PubMed  Google Scholar 

  167. Rossini PM, Micera S, Benvenuto A et al (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121:777–783

    PubMed  Google Scholar 

  168. Palmquist A, Jarmar T, Emanuelsson L et al (2008) Forearm bone-anchored amputation prosthesis: a case study on the osseointegration. Acta Orthop 79:78–85

    PubMed  Google Scholar 

  169. Kuiken TA, Li G, Lock BA et al (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301:619–628

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Daly JJ, Wolpaw JR (2008) Brain–computer interfaces in neurological rehabilitation. Lancet Neurol 7:1032–1043

    PubMed  Google Scholar 

  171. Antfolk C, Balkenius C, Rosén B et al (2010) SmartHand tactile display: a new concept for providing sensory feedback in hand prostheses. Scand J Plast Reconstr Surg Hand Surg 44:50–53

    PubMed  Google Scholar 

  172. Mulvey MR, Fawkner HJ, Radford H et al (2009) The use of transcutaneous electrical nerve stimulation (TENS) to aid perceptual embodiment of prosthetic limbs. Med Hypotheses 72:140–142

    CAS  PubMed  Google Scholar 

  173. Ortiz-Catalan M, Sander N, Kristoffersen MB et al (2014) Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient. Front Neurosci 8:24

    PubMed Central  PubMed  Google Scholar 

  174. Pleger B, Ragert P, Schwenkreis P et al (2006) Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. Neuroimage 32:503–510

    PubMed  Google Scholar 

  175. Flor H, Denke C, Schaefer M et al (2001) Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 357:1763–1764

    CAS  PubMed  Google Scholar 

  176. Pleger B, Tegenthoff M, Ragert P et al (2005) Sensorimotor retuning [corrected] in complex regional pain syndrome parallels pain reduction. Ann Neurol 57:425–429

    PubMed  Google Scholar 

  177. Moseley GL, Wiech K (2009) The effect of tactile discrimination training is enhanced when patients watch the reflected image of their unaffected limb during training. Pain 144:314–319

    PubMed  Google Scholar 

  178. McCabe CS, Blake DR (2007) Evidence for a mismatch between the brain’s movement control system and sensory system as an explanation for some pain-related disorders. Curr Pain Headache Rep 11:104–108

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herta Flor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Bekrater-Bodmann, R., Foell, J., Flor, H. (2015). Chronic Pain and Body Experience: Neuroscientific Basis and Implications For Treatment. In: Kansaku, K., Cohen, L., Birbaumer, N. (eds) Clinical Systems Neuroscience. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55037-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55037-2_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55036-5

  • Online ISBN: 978-4-431-55037-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics