Skip to main content

Cooperative Regulation of Expression of Cytochrome P450 Enzymes by Aryl Hydrocarbon Receptor and Vitamin D Receptor

  • Chapter
  • First Online:
Fifty Years of Cytochrome P450 Research

Abstract

Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon produced by cigarette combustion, is implicated as a causative agent of smoking-related diseases such as cancer and atherosclerosis. BaP activates the aryl hydrocarbon receptor (AHR) and induces the expression of genes involved in xenobiotic metabolism, including cytochrome P450 1A1 (CYP1A1). CYP1A1 is involved not only in BaP detoxification but also in its metabolic activation, which results in DNA adduct formation and reactive oxygen species production. The vitamin D receptor (VDR) mediates vitamin D signaling in the regulation of calcium metabolism, cellular growth and differentiation, inflammation, immunity, and cardiovascular function. VDR belongs to the NR1I subfamily of the nuclear receptor superfamily along with other nuclear receptors involved in xenobiotic metabolism. The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), acts as a physiological VDR ligand and is catalyzed by CYP24A1, a VDR target gene. We have investigated cross-talk between the AHR and VDR signaling pathways. BaP effectively enhances 1,25(OH)2D3-dependent induction of CYP24A1 and inactivation of 1,25(OH)2D3 by CYP24A1 in human monocyte/macrophage-derived cells. The effect of BaP on CYP24A1 induction is mediated by AHR activation and de novo protein synthesis. On the other hand, 1,25(OH)2D3 enhances BaP-induced transcription of CYP1A1 in these cells. VDR and AHR directly bind to specific elements in the human CYP1A1 promoter. Induction of CYP24A1 and CYP1A1 by the activation of VDR and AHR may contribute to BaP-mediated toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi R, Shulman AI, Yamamoto K, Shimomura I, Yamada S, Mangelsdorf DJ, Makishima M (2004) Structural determinants for vitamin D receptor response to endocrine and xenobiotic signals. Mol Endocrinol 18(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Alexandrov K, Rojas M, Satarug S (2010) The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol Lett 198(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Amano Y, Cho Y, Matsunawa M, Komiyama K, Makishima M (2009) Increased nuclear expression and transactivation of vitamin D receptor by the cardiotonic steroid bufalin in human myeloid leukemia cells. J Steroid Biochem Mol Biol 114(3-5):144–151

    Article  CAS  PubMed  Google Scholar 

  • Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw ML, Pettersson S, Hanberg A, Poellinger L (2002) A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci USA 99(15):9990–9995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armas LA, Hollis BW, Heaney RP (2004) Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 89(11):5387–5391

    Article  CAS  PubMed  Google Scholar 

  • Black PN, Scragg R (2005) Relationship between serum 25-hydroxyvitamin D and pulmonary function in the Third National Health and Nutrition Examination Survey. Chest 128(6):3792–3798

    Article  CAS  PubMed  Google Scholar 

  • Bock KW, Kohle C (2006) Ah receptor: dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem Pharmacol 72(4):393–404

    Article  CAS  PubMed  Google Scholar 

  • Bodin K, Lindbom U, Diczfalusy U (2005) Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 1687(1-3):84–93

    Article  CAS  PubMed  Google Scholar 

  • Burczynski ME, Penning TM (2000) Genotoxic polycyclic aromatic hydrocarbon ortho-quinones generated by aldo-keto reductases induce CYP1A1 via nuclear translocation of the aryl hydrocarbon receptor. Cancer Res 60(4):908–915

    CAS  PubMed  Google Scholar 

  • Choi M, Makishima M (2009) Therapeutic applications for novel non-hypercalcemic vitamin D receptor ligands. Expert Opin Ther Pat 19(5):593–606

    Article  CAS  PubMed  Google Scholar 

  • Choi M, Yamada S, Makishima M (2011) Dynamic and ligand-selective interactions of vitamin D receptor with retinoid X receptor and cofactors in living cells. Mol Pharmacol 80(6):1147–1155

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Zhao Y, Hance KW, Shao A, Wood RJ, Fleet JC (2009) Effects of MAPK signaling on 1,25-dihydroxyvitamin D-mediated CYP24 gene expression in the enterocyte-like cell line, Caco-2. J Cell Physiol 219(1):132–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Denissenko MF, Pao A, Tang M-S, Pfeifer GP (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in p53. Science 274(5286):430–432

    Article  CAS  PubMed  Google Scholar 

  • Divanovic S, Dalli J, Jorge-Nebert LF, Flick LM, Galvez-Peralta M, Boespflug ND, Stankiewicz TE, Fitzgerald JM, Somarathna M, Karp CL, Serhan CN, Nebert DW (2013) Contributions of the three CYP1 monooxygenases to pro-inflammatory and inflammation-resolution lipid mediator pathways. J Immunol 191(6):3347–3357

    Article  CAS  PubMed  Google Scholar 

  • Drane P, Compe E, Catez P, Chymkowitch P, Egly JM (2004) Selective regulation of vitamin D receptor-responsive genes by TFIIH. Mol Cell 16(2):187–197

    Article  CAS  PubMed  Google Scholar 

  • Echchgadda I, Song CS, Roy AK, Chatterjee B (2004) Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor. Mol Pharmacol 65(3):720–729

    Article  CAS  PubMed  Google Scholar 

  • Endo K, Uno S, Seki T, Ariga T, Kusumi Y, Mitsumata M, Yamada S, Makishima M (2008) Inhibition of aryl hydrocarbon receptor transactivation and DNA adduct formation by CYP1 isoform-selective metabolic deactivation of benzo[a]pyrene. Toxicol Appl Pharmacol 230(2):135–143

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Liu S, Du Y, Morrison J, Shipman R, Pang KS (2009) Up-regulation of transporters and enzymes by the vitamin D receptor ligands, 1α,25-dihydroxyvitamin D3 and vitamin D analogs, in the Caco-2 cell monolayer. J Pharmacol Exp Ther 330(2):389–402

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Boivin GP, Knudsen ES, Nebert DW, Xia Y, Puga A (2010) The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer Res 70(1):212–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ (1996) Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol Appl Pharmacol 140(1):173–179

    Article  CAS  PubMed  Google Scholar 

  • Fujii-Kuriyama Y, Kawajiri K (2010) Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli. Proc Jpn Acad Ser B Phys Biol Sci 86(1):40–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao J, Xie W (2010) Pregnane X receptor and constitutive androstane receptor at the crossroads of drug metabolism and energy metabolism. Drug Metab Dispos 38(12):2091–2095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hainaut P, Pfeifer GP (2001) Patterns of p53G→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis (Oxf) 22(3):367–374

    Article  CAS  Google Scholar 

  • Hamamoto H, Kusudo T, Urushino N, Masuno H, Yamamoto K, Yamada S, Kamakura M, Ohta M, Inouye K, Sakaki T (2006) Structure-function analysis of vitamin D 24-hydroxylase (CYP24A1) by site-directed mutagenesis: amino acid residues responsible for species-based difference of CYP24A1 between humans and rats. Mol Pharmacol 70(1):120–128

    CAS  PubMed  Google Scholar 

  • Hankinson O, Brooks BA, Weir-Brown KI, Hoffman EC, Johnson BS, Nanthur J, Reyes H, Watson AJ (1991) Genetic and molecular analysis of the Ah receptor and of Cyp1a1 gene expression. Biochimie 73(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 13(3):325–349

    Article  CAS  PubMed  Google Scholar 

  • Henklova P, Vrzal R, Ulrichova J, Dvorak Z (2008) Role of mitogen-activated protein kinases in aryl hydrocarbon receptor signaling. Chem Biol Interact 172(2):93–104

    Article  CAS  PubMed  Google Scholar 

  • Hewison M (2010) Vitamin D and the intracrinology of innate immunity. Mol Cell Endocrinol 321(2):103–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holick MF (2006) Resurrection of vitamin D deficiency and rickets. J Clin Invest 116(8):2062–2072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holick MF (2008) The vitamin D deficiency pandemic and consequences for nonskeletal health: mechanisms of action. Mol Aspects Med 29(6):361–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horst RL, Omdahl JA, Reddy S (2003) Rat cytochrome P450C24 (CYP24) does not metabolize 1,25-dihydroxyvitamin D2 to calcitroic acid. J Cell Biochem 88(2):282–285

    Article  CAS  PubMed  Google Scholar 

  • Irigaray P, Newby JA, Clapp R, Hardell L, Howard V, Montagnier L, Epstein S, Belpomme D (2007) Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed Pharmacother 61(10):640–658

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa M, Ogura M, Kato S, Makishima M (2012) Impairment of bilirubin clearance and intestinal interleukin-6 expression in bile duct-ligated vitamin D receptor null mice. PLoS One 7(12):e51664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones G, Strugnell SA, DeLuca HF (1998) Current understanding of the molecular actions of vitamin D. Physiol Rev 78(4):1193–1231

    CAS  PubMed  Google Scholar 

  • Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, Matsushima Y, Mimura J, Pettersson S, Pollenz RS, Sakaki T, Hirokawa T, Akiyama T, Kurosumi M, Poellinger L, Kato S, Fujii-Kuriyama Y (2009) Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci USA 106(32):13481–13486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy R, Malech HL (1991) Effect of 1,25-dihydroxyvitamin D3, lipopolysaccharide, or lipoteichoic acid on the expression of NADPH oxidase components in cultured human monocytes. J Immunol 147(9):3066–3071

    CAS  PubMed  Google Scholar 

  • Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311(5768):1770–1773

    Article  CAS  PubMed  Google Scholar 

  • Maher J, Yamamoto M (2010) The rise of antioxidant signaling: the evolution and hormetic actions of Nrf2. Toxicol Appl Pharmacol 244(1):4–15

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Schumann BL, Chang X, Talaska G, Puga A (2002) Arsenic co-exposure potentiates benzo[a]pyrene genotoxicity. Mutat Res 517(1–2):101–111

    Article  CAS  PubMed  Google Scholar 

  • Makishima M (2005) Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci 97(2):177–183

    Article  CAS  PubMed  Google Scholar 

  • Makishima M, Yamada S (2005) Targeting the vitamin D receptor: advances in drug discovery. Expert Opin Ther Pat 15(9):1133–1145

    Article  CAS  Google Scholar 

  • Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296(5571):1313–1316

    Article  CAS  PubMed  Google Scholar 

  • Matsunawa M, Amano Y, Endo K, Uno S, Sakaki T, Yamada S, Makishima M (2009) The aryl hydrocarbon receptor activator benzo[a]pyrene enhances vitamin D3 catabolism in macrophages. Toxicol Sci 109(1):50–58

    Article  CAS  PubMed  Google Scholar 

  • Matsunawa M, Akagi D, Uno S, Endo-Umeda K, Yamada S, Ikeda K, Makishima M (2012) Vitamin D receptor activation enhances benzo[a]pyrene metabolism via CYP1A1 expression in macrophages. Drug Metab Dispos 40(11):2059–2066

    Article  CAS  PubMed  Google Scholar 

  • McCarthy TC, Li X, Sinal CJ (2005) Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem 280(24):23232–23242

    Article  CAS  PubMed  Google Scholar 

  • Miller KP, Ramos KS (2001) Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab Rev 33(1):1–35

    Article  CAS  PubMed  Google Scholar 

  • Moennikes O, Loeppen S, Buchmann A, Andersson P, Ittrich C, Poellinger L, Schwarz M (2004) A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res 64(14):4707–4710

    Article  CAS  PubMed  Google Scholar 

  • Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26(5):662–687

    Article  CAS  PubMed  Google Scholar 

  • Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang Y, Dalton TP (2000) Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol 59(1):65–85

    Article  CAS  PubMed  Google Scholar 

  • Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279(23):23847–23850

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Ozeki J, Makishima M (2009) Modulation of bile acid metabolism by 1α-hydroxyvitamin D3 administration in mice. Drug Metab Dispos 37(10):2037–2044

    Article  CAS  PubMed  Google Scholar 

  • Ogura M, Nishida S, Ishizawa M, Sakurai K, Shimizu M, Matsuo S, Amano S, Uno S, Makishima M (2009) Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice. J Pharmacol Exp Ther 328(2):564–570

    Article  CAS  PubMed  Google Scholar 

  • Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H, Takahashi S, Kouzmenko A, Nohara K, Chiba T, Fujii-Kuriyama Y, Kato S (2007) Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature (Lond) 446(7135):562–566

    Article  CAS  Google Scholar 

  • Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, Murad MH, Kovacs CS (2012) The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev 33(3):456–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saeki M, Kurose K, Tohkin M, Hasegawa R (2008) Identification of the functional vitamin D response elements in the human MDR1 gene. Biochem Pharmacol 76(4):531–542

    Article  CAS  PubMed  Google Scholar 

  • Safe S, Lee SO, Jin UH (2013) Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci 135(1):1–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sawada N, Kusudo T, Sakaki T, Hatakeyama S, Hanada M, Abe D, Kamao M, Okano T, Ohta M, Inouye K (2004) Novel metabolism of 1α,25-dihydroxyvitamin D3 with C24-C25 bond cleavage catalyzed by human CYP24A1. Biochemistry 43(15):4530–4537

    Article  CAS  PubMed  Google Scholar 

  • Sharma OP (1996) Vitamin D, calcium, and sarcoidosis. Chest 109(2):535–539

    Article  CAS  PubMed  Google Scholar 

  • Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21(4):257–276

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Fujii-Kuriyama Y (2004) Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci 95(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Shulman AI, Mangelsdorf DJ (2005) Retinoid X receptor heterodimers in the metabolic syndrome. N Engl J Med 353(6):604–615

    Article  CAS  PubMed  Google Scholar 

  • Sly LM, Lopez M, Nauseef WM, Reiner NE (2001) 1α,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J Biol Chem 276(38):35482–35493

    Article  CAS  PubMed  Google Scholar 

  • Thummel KE, Brimer C, Yasuda K, Thottassery J, Senn T, Lin Y, Ishizuka H, Kharasch E, Schuetz J, Schuetz E (2001) Transcriptional control of intestinal cytochrome P-4503A by 1α,25-dihydroxy vitamin D3. Mol Pharmacol 60(6):1399–1406

    CAS  PubMed  Google Scholar 

  • Ueda R, Iketaki H, Nagata K, Kimura S, Gonzalez FJ, Kusano K, Yoshimura T, Yamazoe Y (2006) A common regulatory region functions bidirectionally in transcriptional activation of the human CYP1A1 and CYP1A2 genes. Mol Pharmacol 69(6):1924–1930

    Article  CAS  PubMed  Google Scholar 

  • Uno S, Makishima M (2009) Benzo[a]pyrene toxicity and inflammatory disease. Curr Rheumatol Rev 5:266–271

    Article  CAS  Google Scholar 

  • Uno S, Dalton TP, Shertzer HG, Genter MB, Warshawsky D, Talaska G, Nebert DW (2001) Benzo[a]pyrene-induced toxicity: paradoxical protection in Cyp1a1(−/−) knockout mice having increased hepatic BaP-DNA adduct levels. Biochem Biophys Res Commun 289(5):1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Uno S, Dalton TP, Derkenne S, Curran CP, Miller ML, Shertzer HG, Nebert DW (2004) Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol Pharmacol 65(5):1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Uno S, Dalton TP, Dragin N, Curran CP, Derkenne S, Miller ML, Shertzer HG, Gonzalez FJ, Nebert DW (2006) Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol Pharmacol 69(4):1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R, Carmeliet G (2001) Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci USA 98(23):13324–13329

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu L, Li AP, Kaminski DL, Ruh MF (2000) 2,3,7,8-Tetrachlorodibenzo-p-dioxin induction of cytochrome P4501A in cultured rat and human hepatocytes. Chem Biol Interact 124(3):173–189

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Hashizume T, Shuhart MC, Davis CL, Nelson WL, Sakaki T, Kalhorn TF, Watkins PB, Schuetz EG, Thummel KE (2006) Intestinal and hepatic CYP3A4 catalyze hydroxylation of 1α,25-dihydroxyvitamin D3: implications for drug-induced osteomalacia. Mol Pharmacol 69(1):56–65

    CAS  PubMed  Google Scholar 

  • Xu M, Li D, Lu Y, Chen GQ (2007) Leukemogenic AML1-ETO fusion protein increases carcinogen-DNA adduct formation with upregulated expression of cytochrome P450-1A1 gene. Exp Hematol 35(8):1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari K, Yoda N, Toriyabe T, Yamazoe Y (2010) Constitutive androstane receptor transcriptionally activates human CYP1A1 and CYP1A2 genes through a common regulatory element in the 5′-flanking region. Biochem Pharmacol 79(2):261–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Andrew I. Shulman for editorial assistance. This work was supported by MEXT KAKENHI Grant number 18077995, Nihon University Multidisciplinary Research Grant for 2005 and 2006, Uehara Memorial Foundation, and Ono Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Makishima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Makishima, M. (2014). Cooperative Regulation of Expression of Cytochrome P450 Enzymes by Aryl Hydrocarbon Receptor and Vitamin D Receptor. In: Yamazaki, H. (eds) Fifty Years of Cytochrome P450 Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54992-5_16

Download citation

Publish with us

Policies and ethics