Skip to main content

Steroidogenic Cytochrome P450 Gene CYP11A1: Functions and Regulation

  • Chapter
  • First Online:
Fifty Years of Cytochrome P450 Research

Abstract

Steroids belong to the class of endogenous substrates that are metabolized by cytochromes P450. These steroids are produced in our body, mainly from the adrenals and gonads, and circulate throughout the body in minute amounts to exert their physiological functions. The first and rate-limiting step for the production of all steroids is the conversion of cholesterol into pregnenolone, catalyzed by P450scc, or CYP11A1. Deficiency of CYP11A1 results in adrenal insufficiency that can be lethal when untreated. Hypomorphic expression of Cyp11a1 is less detrimental, but still resulted in decreased stress response in mice. CYP11A1 is expressed mainly in the adrenals and gonads, and to a lesser extent brain, skin, and intestine. Transcription factor NR5A1 controls the expression of Cyp11a1 in the adrenals and testis, whereas NR5A2 controls the expression of Cyp11a1 in the intestine. Both NR5A proteins cooperate with other general factors such as Sp1 and AP1 to activate Cyp11a1 expression in response to the stimulation of cAMP. The cyp11a1 mRNA in zebrafish is also deposited as a maternal transcript for the production of pregnenolone in early embryos. Pregnenolone stabilizes microtubules and promotes embryonic cell migration in zebrafish. Thus, use of the zebrafish model reveals a new function of CYP11A1 during early embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bianchi M, Baulieu EE (2012) 3beta-Methoxy-pregnenolone (MAP4343) as an innovative therapeutic approach for depressive disorders. Proc Natl Acad Sci USA 109(5):1713–1718. doi:10.1073/pnas.1121485109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bose HS, Sugawara T, Strauss JF 3rd, Miller WL, International Congenital Lipoid Adrenal Hyperplasia Consortium (1996) The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 335(25):1870–1878. doi:10.1056/NEJM199612193352503

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Lee WC, Hsu NC, Huang F, Chung BC (2004) SUMO modification of repression domains modulates function of nuclear receptor 5A1 (steroidogenic factor-1). J Biol Chem 279(37):38730–38735. doi:10.1074/jbc.M405006200

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Juan LJ, Chung BC (2005) SF-1 (nuclear receptor 5A1) activity is activated by cyclic AMP via p300-mediated recruitment to active foci, acetylation, and increased DNA binding. Mol Cell Biol 25(23):10442–10453. doi:10.1128/MCB.25.23.10442-10453.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen WY, Weng JH, Huang CC, Chung BC (2007) Histone deacetylase inhibitors reduce steroidogenesis through SCF-mediated ubiquitination and degradation of steroidogenic factor 1 (NR5A1). Mol Cell Biol 27(20):7284–7290. doi:10.1128/MCB.00476-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiang YF, Lin HT, Hu JW, Tai YC, Lin YC, Hu MC (2011) Differential regulation of the human CYP11A1 promoter in mouse brain and adrenals. J Cell Physiol 226(8):1998–2005. doi:10.1002/jcp.22534

    Article  CAS  PubMed  Google Scholar 

  • Chida D, Nakagawa S, Nagai S, Sagara H, Katsumata H, Imaki T, Suzuki H, Mitani F, Ogishima T, Shimizu C, Kotaki H, Kakuta S, Sudo K, Koike T, Kubo M, Iwakura Y (2007) Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc Natl Acad Sci USA 104(46):18205–18210. doi:10.1073/pnas.0706953104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chien Y, Cheng WC, Wu MR, Jiang ST, Shen CK, Chung BC (2013) Misregulated progesterone secretion and impaired pregnancy in CYP11A1 transgenic mice. Biol Reprod 89(4):91. doi:10.1095/biolreprod.113.110833

    Article  PubMed  Google Scholar 

  • Clark BJ, Wells J, King SR, Stocco DM (1994) The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 269(45):28314–28322

    CAS  PubMed  Google Scholar 

  • Compagnone NA, Bulfone A, Rubenstein JL, Mellon SH (1995) Expression of the steroidogenic enzyme P450scc in the central and peripheral nervous systems during rodent embryogenesis. Endocrinology 136(6):2689–2696. doi:10.1210/endo.136.6.7750493

    CAS  PubMed  Google Scholar 

  • Desclozeaux M, Krylova IN, Horn F, Fletterick RJ, Ingraham HA (2002) Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Mol Cell Biol 22(20):7193–7203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flood JF, Morley JE, Roberts E (1992) Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it. Proc Natl Acad Sci USA 89(5):1567–1571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo IC, Tsai HM, Chung BC (1994) Actions of two different cAMP-responsive sequences and an enhancer of the human CYP11A1 (P450scc) gene in adrenal Y1 and placental JEG-3 cells. J Biol Chem 269(9):6362–6369

    CAS  PubMed  Google Scholar 

  • Guo IC, Chung BC (1999) Cell-type specificity of human CYP11A1 TATA box. J Steroid Biochem Mol Biol 69(1–6):329–334

    Article  CAS  PubMed  Google Scholar 

  • Guo IC, Huang CY, Wang CK, Chung BC (2007) Activating protein-1 cooperates with steroidogenic factor-1 to regulate 3',5'-cyclic adenosine 5'-monophosphate-dependent human CYP11A1 transcription in vitro and in vivo. Endocrinology 148(4):1804–1812. doi:10.1210/en.2006-0938

    Article  CAS  PubMed  Google Scholar 

  • Guryev O, Carvalho RA, Usanov S, Gilep A, Estabrook RW (2003) A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Proc Natl Acad Sci USA 100(25):14754–14759. doi:10.1073/pnas.2336107100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guth L, Zhang Z, Roberts E (1994) Key role for pregnenolone in combination therapy that promotes recovery after spinal cord injury. Proc Natl Acad Sci USA 91(25):12308–12312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hammer GD, Krylova I, Zhang Y, Darimont BD, Simpson K, Weigel NL, Ingraham HA (1999) Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell 3(4):521–526

    Article  CAS  PubMed  Google Scholar 

  • Hiort O, Holterhus PM, Werner R, Marschke C, Hoppe U, Partsch CJ, Riepe FG, Achermann JC, Struve D (2005) Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46, XY sex reversal, and severe adrenal failure. J Clin Endocrinol Metab 90(1):538–541. doi:10.1210/jc.2004-1059

    Article  CAS  PubMed  Google Scholar 

  • Honda S, Morohashi K, Nomura M, Takeya H, Kitajima M, Omura T (1993) Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem 268(10):7494–7502

    CAS  PubMed  Google Scholar 

  • Hsu HJ, Hsiao P, Kuo MW, Chung BC (2002) Expression of zebrafish cyp11a1 as a maternal transcript and in yolk syncytial layer. Gene Expr Patterns 2(3-4):219–222

    Article  CAS  PubMed  Google Scholar 

  • Hsu HJ, Hsu NC, Hu MC, Chung BC (2006a) Steroidogenesis in zebrafish and mouse models. Mol Cell Endocrinol 248(1-2):160–163. doi:10.1016/j.mce.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  • Hsu HJ, Liang MR, Chen CT, Chung BC (2006b) Pregnenolone stabilizes microtubules and promotes zebrafish embryonic cell movement. Nature (Lond) 439(7075):480–483. doi:10.1038/nature04436

    Article  CAS  Google Scholar 

  • Hu MC, Chou SJ, Huang YY, Hsu NC, Li H, Chung BC (1999) Tissue-specific, hormonal, and developmental regulation of SCC-LacZ expression in transgenic mice leads to adrenocortical zone characterization. Endocrinology 140(12):5609–5618

    CAS  PubMed  Google Scholar 

  • Hu MC, Chiang EF, Tong SK, Lai W, Hsu NC, Wang LC, Chung BC (2001) Regulation of steroidogenesis in transgenic mice and zebrafish. Mol Cell Endocrinol 171(1-2):9–14

    Article  CAS  PubMed  Google Scholar 

  • Hu MC, Hsu NC, El Hadj NB, Pai CI, Chu HP, Wang CK, Chung BC (2002) Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol Endocrinol 16(8):1943–1950

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Shih MC, Hsu NC, Chien Y, Chung BC (2012) Fetal glucocorticoid synthesis is required for development of fetal adrenal medulla and hypothalamus feedback suppression. Endocrinology 153(10):4749–4756. doi:10.1210/en.2012-1258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janjetovic Z, Tuckey RC, Nguyen MN, Thorpe EM Jr, Slominski AT (2010) 20,23-Dihydroxyvitamin D3, novel P450scc product, stimulates differentiation and inhibits proliferation and NF-kappaB activity in human keratinocytes. J Cell Physiol 223(1):36–48. doi:10.1002/jcp.21992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim CJ, Lin L, Huang N, Quigley CA, AvRuskin TW, Achermann JC, Miller WL (2008) Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc. J Clin Endocrinol Metab 93(3):696–702. doi:10.1210/jc.2007-2330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimoto T, Tsurugizawa T, Ohta Y, Makino J, Tamura H, Hojo Y, Takata N, Kawato S (2001) Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons: N-methyl-d-aspartate and calcium-dependent synthesis. Endocrinology 142(8):3578–3589. doi:10.1210/endo.142.8.8327

    Article  CAS  PubMed  Google Scholar 

  • Lan HC, Li HJ, Lin G, Lai PY, Chung BC (2007) Cyclic AMP stimulates SF-1-dependent CYP11A1 expression through homeodomain-interacting protein kinase 3-mediated Jun N-terminal kinase and c-Jun phosphorylation. Mol Cell Biol 27(6):2027–2036. doi:10.1128/MCB.02253-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lan HC, Wu CF, Shih HM, Chung BC (2012) Death-associated protein 6 (Daxx) mediates cAMP-dependent stimulation of Cyp11a1 (P450scc) transcription. J Biol Chem 287(8):5910–5916. doi:10.1074/jbc.M111.307603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Goascogne C, Robel P, Gouezou M, Sananes N, Baulieu EE, Waterman M (1987) Neurosteroids: cytochrome P-450scc in rat brain. Science 237(4819):1212–1215

    Article  PubMed  Google Scholar 

  • Lee HS, Komarova YA, Nadezhdina ES, Anjum R, Peloquin JG, Schober JM, Danciu O, van Haren J, Galjart N, Gygi SP, Akhmanova A, Borisy GG (2010) Phosphorylation controls autoinhibition of cytoplasmic linker protein-170. Mol Biol Cell 21(15):2661–2673. doi:10.1091/mbc.E09-12-1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee FY, Faivre EJ, Suzawa M, Lontok E, Ebert D, Cai F, Belsham DD, Ingraham HA (2011) Eliminating SF-1 (NR5A1) sumoylation in vivo results in ectopic hedgehog signaling and disruption of endocrine development. Dev Cell 21(2):315–327. doi:10.1016/j.devcel.2011.06.028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis AE, Rusten M, Hoivik EA, Vikse EL, Hansson ML, Wallberg AE, Bakke M (2008) Phosphorylation of steroidogenic factor 1 is mediated by cyclin-dependent kinase 7. Mol Endocrinol 22(1):91–104. doi:10.1210/me.2006-0478

    Article  CAS  PubMed  Google Scholar 

  • Li LA, Lala D, Chung BC (1998) Function of steroidogenic factor 1 (SF1) ligand-binding domain in gene activation and interaction with AP1. Biochem Biophys Res Commun 250(2):318–320. doi:10.1006/bbrc.1998.9305

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Takemori H, Katoh Y, Doi J, Horike N, Makino A, Nonaka Y, Okamoto M (2001) Salt-inducible kinase is involved in the ACTH/cAMP-dependent protein kinase signaling in Y1 mouse adrenocortical tumor cells. Mol Endocrinol 15(8):1264–1276. doi:10.1210/mend.15.8.0675

    Article  CAS  PubMed  Google Scholar 

  • Marieb EN, Hoehn K (2007) Human anatomy and physiology, 7th edn. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Marx CE, Bradford DW, Hamer RM, Naylor JC, Allen TB, Lieberman JA, Strauss JL, Kilts JD (2011) Pregnenolone as a novel therapeutic candidate in schizophrenia: emerging preclinical and clinical evidence. Neuroscience 191:78–90. doi:10.1016/j.neuroscience.2011.06.076

    Article  CAS  PubMed  Google Scholar 

  • Mayo W, Le Moal M, Abrous DN (2001) Pregnenolone sulfate and aging of cognitive functions: behavioral, neurochemical, and morphological investigations. Horm Behav 40(2):215–217. doi:10.1006/hbeh.2001.1677

    Article  CAS  PubMed  Google Scholar 

  • Mellon SH, Bair SR (1998) 25-Hydroxycholesterol is not a ligand for the orphan nuclear receptor steroidogenic factor-1 (SF-1). Endocrinology 139(6):3026–3029. doi:10.1210/endo.139.6.6129

    Article  CAS  PubMed  Google Scholar 

  • Mellon SH, Deschepper CF (1993) Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 629(2):283–292

    Article  CAS  PubMed  Google Scholar 

  • Mishima M, Maesaki R, Kasa M, Watanabe T, Fukata M, Kaibuchi K, Hakoshima T (2007) Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc Natl Acad Sci USA 104(25):10346–10351. doi:10.1073/pnas.0703876104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mueller M, Cima I, Noti M, Fuhrer A, Jakob S, Dubuquoy L, Schoonjans K, Brunner T (2006) The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J Exp Med 203(9):2057–2062. doi:10.1084/jem.20060357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson DR (2006) Cytochrome P450 nomenclature, 2004. Methods Mol Biol 320:1–10. doi:10.1385/1-59259-998-2:1

    CAS  PubMed  Google Scholar 

  • Noti M, Corazza N, Tuffin G, Schoonjans K, Brunner T (2010) Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFalpha-dependent manner. FASEB J 24(5):1340–1346. doi:10.1096/fj.09-140913

    Article  CAS  PubMed  Google Scholar 

  • Nuclear Receptors Nomenclature Committee (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97(2):161–163

    Article  Google Scholar 

  • Papadimitriou A, Priftis KN (2009) Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation 16(5):265–271. doi:10.1159/000216184

    Article  CAS  PubMed  Google Scholar 

  • Parajes S, Griffin A, Taylor AE, Rose IT, Miguel-Escalada I, Hadzhiev Y, Arlt W, Shackleton C, Muller F, Krone N (2013) Redefining the initiation and maintenance of zebrafish interrenal steroidogenesis by characterizing the key enzyme cyp11a2. Endocrinology 154(8):2702–2711. doi:10.1210/en.2013-1145

    Article  CAS  PubMed  Google Scholar 

  • Parker KL, Rice DA, Lala DS, Ikeda Y, Luo X, Wong M, Bakke M, Zhao L, Frigeri C, Hanley NA, Stallings N, Schimmer BP (2002) Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog Horm Res 57:19–36

    Article  CAS  PubMed  Google Scholar 

  • Purifoy FE, Koopmans LH, Tatum RW (1980) Steroid hormones and aging: free testosterone, testosterone and androstenedione in normal females aged 20–87 years. Hum Biol 52(2):181–191

    CAS  PubMed  Google Scholar 

  • Pusalkar M, Meherji P, Gokral J, Chinnaraj S, Maitra A (2009) CYP11A1 and CYP17 promoter polymorphisms associate with hyperandrogenemia in polycystic ovary syndrome. Fertil Steril 92(2):653–659. doi:10.1016/j.fertnstert.2008.07.016

    Article  CAS  PubMed  Google Scholar 

  • Sahakitrungruang T, Tee MK, Blackett PR, Miller WL (2011) Partial defect in the cholesterol side-chain cleavage enzyme P450scc (CYP11A1) resembling nonclassic congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab 96(3):792–798. doi:10.1210/jc.2010-1828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJ, Garcia-Segura LM, Lambert JJ, Mayo W, Melcangi RC, Parducz A, Suter U, Carelli C, Baulieu EE, Akwa Y (2003) Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 71(1):3–29

    Article  CAS  PubMed  Google Scholar 

  • Shih MC, Hsu NC, Huang CC, Wu TS, Lai PY, Chung BC (2008) Mutation of mouse Cyp11a1 promoter caused tissue-specific reduction of gene expression and blunted stress response without affecting reproduction. Mol Endocrinol 22(4):915–923. doi:10.1210/me.2007-0222

    Article  CAS  PubMed  Google Scholar 

  • Shih MC, Chiu YN, Hu MC, Guo IC, Chung BC (2011) Regulation of steroid production: analysis of Cyp11a1 promoter. Mol Cell Endocrinol 336(1–2):80–84. doi:10.1016/j.mce.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  • Slominski A, Zjawiony J, Wortsman J, Semak I, Stewart J, Pisarchik A, Sweatman T, Marcos J, Dunbar C, CT R (2004) A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin. Eur J Biochem/FEBS 271(21):4178–4188. doi:10.1111/j.1432-1033.2004.04356.x

    Article  CAS  Google Scholar 

  • Strauss JF 3rd (2003) Some new thoughts on the pathophysiology and genetics of polycystic ovary syndrome. Ann N Y Acad Sci 997:42–48

    Article  PubMed  Google Scholar 

  • Terry K, McGrath M, Lee IM, Buring J, De Vivo I (2010) Genetic variation in CYP11A1 and StAR in relation to endometrial cancer risk. Gynecol Oncol 117(2):255–259. doi:10.1016/j.ygyno.2010.02.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ukena K, Usui M, Kohchi C, Tsutsui K (1998) Cytochrome P450 side-chain cleavage enzyme in the cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology 139(1):137–147. doi:10.1210/endo.139.1.5672

    CAS  PubMed  Google Scholar 

  • Vallee M, Mayo W, Le Moal M (2001) Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Res Rev 37(1–3):301–312

    Article  CAS  PubMed  Google Scholar 

  • Weng JH, Liang MR, Chen CH, Tong SK, Huang TC, Lee SP, Chen YR, Chen CT, Chung BC (2013) Pregnenolone activates CLIP-170 to promote microtubule growth and cell migration. Nat Chem Biol 9(10):636–642. doi:10.1038/nchembio.1321

    Article  CAS  PubMed  Google Scholar 

  • Williams GH, Dluhy RG (1972) Aldosterone biosynthesis. Interrelationship of regulatory factors. Am J Med 53(5):595–605

    Article  CAS  PubMed  Google Scholar 

  • Winnay JN, Hammer GD (2006) Adrenocorticotropic hormone-mediated signaling cascades coordinate a cyclic pattern of steroidogenic factor 1-dependent transcriptional activation. Mol Endocrinol 20(1):147–166. doi:10.1210/me.2005-0215

    Article  CAS  PubMed  Google Scholar 

  • Wu HS, Lin HT, Wang CK, Chiang YF, Chu HP, Hu MC (2007) Human CYP11A1 promoter drives Cre recombinase expression in the brain in addition to adrenals and gonads. Genesis 45(2):59–65. doi:10.1002/dvg.20266

    Article  CAS  PubMed  Google Scholar 

  • Yaspan BL, Breyer JP, Cai Q, Dai Q, Elmore JB, Amundson I, Bradley KM, Shu XO, Gao YT, Dupont WD, Zheng W, Smith JR (2007) Haplotype analysis of CYP11A1 identifies promoter variants associated with breast cancer risk. Cancer Res 67(12):5673–5682. doi:10.1158/0008-5472.CAN-07-0467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the work described in this review was supported by grants NSC 102-2311-B-001-013-MY3 and 102-2923-B-001-003-MY3 from National Science Council, NHRI- EX102-10210SI from National Health Research Institutes, and AS-101-TP-B05 from Academia Sinica, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bon-chu Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Shih, M.MC. et al. (2014). Steroidogenic Cytochrome P450 Gene CYP11A1: Functions and Regulation. In: Yamazaki, H. (eds) Fifty Years of Cytochrome P450 Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54992-5_15

Download citation

Publish with us

Policies and ethics