Skip to main content

Antioxidative Treatment for Neuroprotection in Glaucoma

  • Chapter
  • First Online:
Neuroprotection and Neuroregeneration for Retinal Diseases
  • 784 Accesses

Abstract

Glaucoma is a neurodegenerative disease with progressive retinal ganglion cell apoptosis. IOP elevation is a modifiable proven risk factor for glaucoma. Although a lot of new medicines and surgeries for lowering IOP have come in, glaucoma is still a leading cause of blindness in the world, motivating us to search IOP-independent treatment. Accumulating evidences point to an association between oxidative stress and glaucoma. Increased level of oxidative DNA damage, lipid peroxidation, and protein oxidation and reduced antioxidative status were observed in serum, trabecular meshwork, and aqueous humor of human glaucoma subjects. Antioxidants protect retinal ganglion cell apoptosis from IOP elevation, optic nerve injury, inflammation, and impaired ocular blood flow in vivo and in vitro. Some population-based epidemiological studies showed that higher antioxidant intake reduced risk of glaucoma. This review focused on the present evidence that support the possibility of antioxidant neuroprotective treatment for glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267. doi:10.1136/bjo.2005.081224

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Tanabe S, Yuki K, Ozeki N et al (2011) The association between primary open-angle glaucoma and motor vehicle collisions. Invest Ophthalmol Vis Sci 52:4177–4181. doi:10.1167/iovs.10-6264

    PubMed  Google Scholar 

  3. Yuki K, Tanabe S, Kouyama K et al (2013) The association between visual field defect severity and fear of falling in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 54:7739–7745. doi:10.1167/iovs.13-12079

    PubMed  Google Scholar 

  4. Coleman AL, Miglior S (2008) Risk factors for glaucoma onset and progression. Surv Ophthalmol 53(Suppl 1):S3–S10. doi:10.1016/j.survophthal.2008.08.006

    PubMed  Google Scholar 

  5. Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet 363:1711–1720. doi:10.1016/S0140-6736(04)16257-0

    PubMed  Google Scholar 

  6. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. doi:10.1038/35041687

    CAS  PubMed  Google Scholar 

  7. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472. doi:10.1016/j.exger.2010.01.003

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Barja G (1999) Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr 31:347–366

    CAS  PubMed  Google Scholar 

  9. Janssen-Heininger YM, Mossman BT, Heintz NH et al (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45:1–17. doi:10.1016/j.freeradbiomed.2008.03.011

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Radak Z, Zhao Z, Goto S et al (2011) Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Mol Aspects Med 32:305–315. doi:10.1016/j.mam.2011.10.010 11

    CAS  PubMed  Google Scholar 

  11. Sultana R, Perluigi M, Butterfield DA (2009) Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 118:131–150. doi:10.1007/s00401-009-0517-0

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Sultana R, Perluigi M, Allan Butterfield D (2012) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169. doi:10.1016/j.freeradbiomed.2012.09.027

    PubMed  Google Scholar 

  13. Nunomura A, Castellani RJ, Zhu X et al (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65:631–641. doi:10.1097/01.jnen.0000228136.58062.bf

    CAS  PubMed  Google Scholar 

  14. Varcin M, Bentea E, Michotte Y et al (2012) Oxidative stress in genetic mouse models of Parkinson’s disease. Oxid Med Cell Longev 2012:624925. doi:10.1155/2012/624925

    PubMed Central  PubMed  Google Scholar 

  15. Yao Z, Wood NW (2009) Cell death pathways in Parkinson’s disease: role of mitochondria. Antioxid Redox Signal 11:2135–2149. doi:10.1089/ARS.2009.2624

    CAS  PubMed  Google Scholar 

  16. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:120–139. doi:10.1080/10590500902885684

    CAS  PubMed  Google Scholar 

  17. Moriya M, Grollman AP (1993) Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C-->T:a transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet 239:72–76

    CAS  PubMed  Google Scholar 

  18. Aksenova MV, Aksenov MY, Payne RM et al (1999) Oxidation of cytosolic proteins and expression of creatine kinase BB in frontal lobe in different neurodegenerative disorders. Dement Geriatr Cogn Disord 10:158–165

    CAS  PubMed  Google Scholar 

  19. Anzai K, Ogawa K, Goto Y et al (1999) Oxidation-dependent changes in the stability and permeability of lipid bilayers. Antioxid Redox Signal 1:339–347

    CAS  PubMed  Google Scholar 

  20. Sorkhabi R, Ghorbanihaghjo A, Javadzadeh A et al (2011) Oxidative DNA damage and total antioxidant status in glaucoma patients. Mol Vis 17:41–46

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Izzotti A, Sacca SC, Cartiglia C et al (2003) Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am J Med 114:638–646

    CAS  PubMed  Google Scholar 

  22. Sacca SC, Pascotto A, Camicione P et al (2005) Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol 123(4):458–463. doi:10.1001/archopht.123.4.458

    CAS  PubMed  Google Scholar 

  23. Wu LL, Chiou CC, Chang PY et al (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339:1–9

    CAS  PubMed  Google Scholar 

  24. Majsterek I, Malinowska K, Stanczyk M et al (2011) Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp Mol Pathol 90:231–237. doi:10.1016/j.yexmp.2011.01.001

    CAS  PubMed  Google Scholar 

  25. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328. doi:10.1016/j.numecd.2005.05.003

    PubMed  Google Scholar 

  26. Erdurmus M, Yagci R, Atis O et al (2011) Antioxidant status and oxidative stress in primary open angle glaucoma and pseudoexfoliative glaucoma. Curr Eye Res 36:713–718. doi:10.3109/02713683.2011.584370

    CAS  PubMed  Google Scholar 

  27. Zanon-Moreno V, Marco-Ventura P, Lleo-Perez A et al (2008) Oxidative stress in primary open-angle glaucoma. J Glaucoma 17:263–268. doi:10.1097/IJG.0b013e31815c3a7f

    PubMed  Google Scholar 

  28. Nucci C, Di Pierro D, Varesi C et al (2013) Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol Vis 19:1841–1846

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111. doi:10.1016/j.clinbiochem.2005.08.008

    CAS  PubMed  Google Scholar 

  30. Ferreira SM, Lerner SF, Brunzini R et al (2004) Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol 137:62–69

    CAS  PubMed  Google Scholar 

  31. Tanito M, Kaidzu S, Takai Y et al (2012) Status of systemic oxidative stresses in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLoS One 7:e49680. doi:10.1371/journal.pone.0049680

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Pasquini A, Luchetti E, Marchetti V et al (2008) Analytical performances of d-ROMs test and BAP test in canine plasma. Definition of the normal range in healthy Labrador dogs. Vet Res Commun 32:137–143. doi:10.1007/s11259-007-9014-x

    CAS  PubMed  Google Scholar 

  33. Bagnis A, Izzotti A, Centofanti M et al (2012) Aqueous humor oxidative stress proteomic levels in primary open angle glaucoma. Exp Eye Res 103:55–62. doi:10.1016/j.exer.2012.07.011

    CAS  PubMed  Google Scholar 

  34. Zengi O, Karakas A, Ergun U et al (2011) Urinary 8-hydroxy-2′-deoxyguanosine level and plasma paraoxonase 1 activity with Alzheimer’s disease. Clin Chem Lab Med 50:529–534. doi:10.1515/CCLM.2011.792

    PubMed  Google Scholar 

  35. McGrath LT, McGleenon BM, Brennan S et al (2001) Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM 94:485–490

    CAS  PubMed  Google Scholar 

  36. Seet RC, Lee CY, Lim EC et al (2009) Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med 48:560–566. doi:10.1016/j.freeradbiomed.2009.11.026

    PubMed  Google Scholar 

  37. Chen CM, Liu JL, Wu YR et al (2009) Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol Dis 33:429–435. doi:10.1016/j.nbd.2008.11.011

    CAS  PubMed  Google Scholar 

  38. van Rensburg SJ, van Zyl JM, Potocnik FC et al (2006) The effect of stress on the antioxidative potential of serum: implications for Alzheimer’s disease. Metab Brain Dis 21:171–179. doi:10.1007/s11011-006-9020-7

    PubMed  Google Scholar 

  39. Sharma A, Kaur P, Kumar B et al (2008) Plasma lipid peroxidation and antioxidant status of Parkinson’s disease patients in the Indian population. Parkinsonism Relat Disord 14:52–57. doi:10.1016/j.parkreldis.2007.06.009

    PubMed  Google Scholar 

  40. Bayer AU, Keller ON, Ferrari F et al (2002) Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer’s disease and Parkinson’s disease. Am J Ophthalmol 133:135–137

    PubMed  Google Scholar 

  41. Yuki K, Murat D, Kimura I et al (2010) Increased serum total antioxidant status and decreased urinary 8-hydroxy-2′-deoxyguanosine levels in patients with normal-tension glaucoma. Acta Ophthalmol 88:e259–e264. doi:10.1111/j.1755-3768.2010.01997.x

    PubMed  Google Scholar 

  42. Yuki K, Tsubota K (2013) Increased urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG)/creatinine level is associated with the progression of normal-tension glaucoma. Curr Eye Res 38:983–988. doi:10.3109/02713683.2013.800889

    CAS  PubMed  Google Scholar 

  43. Ferreira SM, Lerner SF, Brunzini R et al (2010) Time course changes of oxidative stress markers in a rat experimental glaucoma model. Invest Ophthalmol Vis Sci 51:4635–4640. doi:10.1167/iovs.09-5044

    PubMed  Google Scholar 

  44. Boveris A, Cadenas E, Reiter R et al (1980) Organ chemiluminescence: noninvasive assay for oxidative radical reactions. Proc Natl Acad Sci U S A 77:347–351

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Bird RP, Draper HH (1984) Comparative studies on different methods of malonaldehyde determination. Methods Enzymol 105:299–305

    CAS  PubMed  Google Scholar 

  46. Faulkner K, Fridovich I (1993) Luminol and lucigenin as detectors for O2. Free Radic Biol Med 15:447–451

    CAS  PubMed  Google Scholar 

  47. Vasquez-Vivar J, Martasek P, Hogg N et al (1999) Electron spin resonance spin-trapping detection of superoxide generated by neuronal nitric oxide synthase. Methods Enzymol 301:169–177

    CAS  PubMed  Google Scholar 

  48. Ko ML, Peng PH, Ma MC et al (2005) Dynamic changes in reactive oxygen species and antioxidant levels in retinas in experimental glaucoma. Free Radic Biol Med 39:365–373. doi:10.1016/j.freeradbiomed.2005.03.025

    CAS  PubMed  Google Scholar 

  49. Ozdemir G, Tolun FI, Gul M et al (2009) Retinal oxidative stress induced by intraocular hypertension in rats may be ameliorated by brimonidine treatment and n-acetyl cysteine supplementation. J Glaucoma 18:662–665. doi:10.1097/IJG.0b013e31819c46b1

    PubMed  Google Scholar 

  50. Moreno MC, Campanelli J, Sande P et al (2004) Retinal oxidative stress induced by high intraocular pressure. Free Radic Biol Med 37:803–812

    CAS  PubMed  Google Scholar 

  51. Spickett CM (2013) The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol 1:145–152. doi:10.1016/j.redox.2013.01.007

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Liu Q, Ju WK, Crowston JG et al (2007) Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage. Invest Ophthalmol Vis Sci 48:4580–4589. doi:10.1167/iovs.07-0170

    PubMed  Google Scholar 

  53. Tezel G, Yang X, Cai J (2005) Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest Ophthalmol Vis Sci 46:3177–3187. doi:10.1167/iovs.05-0208

    PubMed  Google Scholar 

  54. Chang B, Smith RS, Hawes NL et al (1999) Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice. Nat Genet 21:405–409. doi:10.1038/7741

    CAS  PubMed  Google Scholar 

  55. Inman DM, Lambert WS, Calkins DJ et al (2013) Alpha-lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction. PLoS One 8:e65389. doi:10.1371/journal.pone.0065389

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Rochette L, Ghibu S, Richard C et al (2013) Direct and indirect antioxidant properties of alpha-lipoic acid and therapeutic potential. Mol Nutr Food Res 57:114–125. doi:10.1002/mnfr.201200608

    CAS  PubMed  Google Scholar 

  57. Munemasa Y, Kitaoka Y, Kuribayashi J et al (2010) Modulation of mitochondria in the axon and soma of retinal ganglion cells in a rat glaucoma model. J Neurochem 115:1508–1519. doi:10.1111/j.1471-4159.2010.07057.x

    CAS  PubMed  Google Scholar 

  58. Ju WK, Kim KY, Lindsey JD et al (2008) Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest Ophthalmol Vis Sci 49:4903–4911. doi:10.1167/iovs.07-1661

    PubMed Central  PubMed  Google Scholar 

  59. Bleier L, Drose S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 1827:1320–1331. doi:10.1016/j.bbabio.2012.12.002

    CAS  PubMed  Google Scholar 

  60. Gus’kova RA, Ivanov II, Kol’tover VK et al (1984) Permeability of bilayer lipid membranes for superoxide (O2-.) radicals. Biochim Biophys Acta 778:579–585

    PubMed  Google Scholar 

  61. Lee EJ, Kim TW, Weinreb RN et al (2013) Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma. Ophthalmology 120:553–559. doi:10.1016/j.ophtha.2012.08.047

    PubMed  Google Scholar 

  62. Quigley HA, McKinnon SJ, Zack DJ et al (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 41:3460–3466

    CAS  PubMed  Google Scholar 

  63. Kanamori A, Catrinescu MM, Kanamori N et al (2010) Superoxide is an associated signal for apoptosis in axonal injury. Brain 133:2612–2625. doi:10.1093/brain/awq105

    PubMed Central  PubMed  Google Scholar 

  64. Lieven CJ, Hoegger MJ, Schlieve CR et al (2006) Retinal ganglion cell axotomy induces an increase in intracellular superoxide anion. Invest Ophthalmol Vis Sci 47:1477–1485. doi:10.1167/iovs.05-0921

    PubMed  Google Scholar 

  65. Munemasa Y, Kim SH, Ahn JH et al (2008) Protective effect of thioredoxins 1 and 2 in retinal ganglion cells after optic nerve transection and oxidative stress. Invest Ophthalmol Vis Sci 49:3535–3543. doi:10.1167/iovs.08-1716

    PubMed  Google Scholar 

  66. Himori N, Yamamoto K, Maruyama K et al (2013) Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J Neurochem. doi:10.1111/jnc.12325

    PubMed  Google Scholar 

  67. Gan L, Johnson JA (2013) Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta. doi:10.1016/j.bbadis.2013.12.011

    PubMed Central  Google Scholar 

  68. Cherecheanu AP, Garhofer G, Schmidl D et al (2012) Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 13:36–42. doi:10.1016/j.coph.2012.09.003

    PubMed  Google Scholar 

  69. Caprioli J, Coleman AL (2010) Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 149:704–712. doi:10.1016/j.ajo.2010.01.018

    PubMed  Google Scholar 

  70. Leske MC, Wu SY, Hennis A et al (2008) Risk factors for incident open-angle glaucoma: the Barbados eye studies. Ophthalmology 115:85–93. doi:10.1016/j.ophtha.2007.03.017

    PubMed  Google Scholar 

  71. Quigley HA, West SK, Rodriguez J et al (2001) The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 119:1819–1826

    CAS  PubMed  Google Scholar 

  72. Leske MC, Heijl A, Hyman L et al (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972. doi:10.1016/j.ophtha.2007.03.016

    PubMed  Google Scholar 

  73. Chiba N, Omodaka K, Yokoyama Y et al (2013) Association between optic nerve blood flow and objective examinations in glaucoma patients with generalized enlargement disc type. Clin Ophthalmol 5:1549–1556. doi:10.2147/OPTH.S22097

    Google Scholar 

  74. Yokoyama Y, Aizawa N, Chiba N et al (2011) Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin Ophthalmol 5:1721–1727. doi:10.2147/OPTH.S23204

    PubMed Central  PubMed  Google Scholar 

  75. Okumura Y, Yuki K, Tsubota K (2012) Low diastolic blood pressure is associated with the progression of normal-tension glaucoma. Ophthalmologica 228:36–41. doi:10.1159/000335978

    PubMed  Google Scholar 

  76. Tezel G, Wax MB (2004) Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head. Arch Ophthalmol 122:1348–1356. doi:10.1001/archopht.122.9.1348

    CAS  PubMed  Google Scholar 

  77. Lam TT, Abler AS, Tso MO (1999) Apoptosis and caspases after ischemia-reperfusion injury in rat retina. Invest Ophthalmol Vis Sci 40:967–975

    CAS  PubMed  Google Scholar 

  78. Szabo ME, Droy-Lefaix MT, Doly M (1997) Direct measurement of free radicals in ischemic/reperfused diabetic rat retina. Clin Neurosci 4:240–245

    CAS  PubMed  Google Scholar 

  79. Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138. doi:10.1523/JNEUROSCI.4468-06.2007

    CAS  PubMed  Google Scholar 

  80. Song Y, Gong YY, Xie ZG et al (2008) Edaravone (MCI-186), a free radical scavenger, attenuates retinal ischemia/reperfusion injury in rats. Acta Pharmacol Sin 29:823–828. doi:10.1111/j.1745-7254.2008.00822.x

    CAS  PubMed  Google Scholar 

  81. Nayak MS, Kita M, Marmor MF (1993) Protection of rabbit retina from ischemic injury by superoxide dismutase and catalase. Invest Ophthalmol Vis Sci 34:2018–2022

    CAS  PubMed  Google Scholar 

  82. Dilsiz N, Sahaboglu A, Yildiz MZ et al (2006) Protective effects of various antioxidants during ischemia-reperfusion in the rat retina. Graefes Arch Clin Exp Ophthalmol 244:627–633. doi:10.1007/s00417-005-0084-6

    CAS  PubMed  Google Scholar 

  83. Zhang Z, Qin X, Zhao X et al (2011) Valproic acid regulates antioxidant enzymes and prevents ischemia/reperfusion injury in the rat retina. Curr Eye Res 37:429–437. doi:10.3109/02713683.2011.653616

    Google Scholar 

  84. Liu Y, Tang L, Chen B (2012) Effects of antioxidant gene therapy on retinal neurons and oxidative stress in a model of retinal ischemia/reperfusion. Free Radic Biol Med 52:909–915. doi:10.1016/j.freeradbiomed.2011.12.013

    CAS  PubMed  Google Scholar 

  85. Chen B, Tang L (2011) Protective effects of catalase on retinal ischemia/reperfusion injury in rats. Exp Eye Res 93:599–606. doi:10.1016/j.exer.2011.07.007

    CAS  PubMed  Google Scholar 

  86. Oharazawa H, Igarashi T, Yokota T et al (2010) Protection of the retina by rapid diffusion of hydrogen: administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 51:487–492. doi:10.1167/iovs.09-4089

    PubMed  Google Scholar 

  87. Ohsawa I, Ishikawa M, Takahashi K et al (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694. doi:10.1038/nm1577

    CAS  PubMed  Google Scholar 

  88. Ji X, Tian Y, Xie K et al (2012) Protective effects of hydrogen-rich saline in a rat model of traumatic brain injury via reducing oxidative stress. J Surg Res 178:e9–e16. doi:10.1016/j.jss.2011.12.038

    CAS  PubMed  Google Scholar 

  89. Ji X, Liu W, Xie K et al (2010) Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress. Brain Res 1354:196–205. doi:10.1016/j.brainres.2010.07.038

    CAS  PubMed  Google Scholar 

  90. Kubota M, Shimmura S, Kubota S et al (2011) Hydrogen and n-acetyl-l-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model. Invest Ophthalmol Vis Sci 52:427–433. doi:10.1167/iovs.10-6167

    CAS  PubMed  Google Scholar 

  91. Yang CX, Yan H, Ding TB (2013) Hydrogen saline prevents selenite-induced cataract in rats. Mol Vis 19:1684–1693

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Feng M, Wang XH, Yang XB et al (2012) Protective effect of saturated hydrogen saline against blue light-induced retinal damage in rats. Int J Ophthalmol 5:151–157. doi:10.3980/j.issn.2222-3959.2012.02.07

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Ono H, Nishijima Y, Adachi N et al (2011) Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study. Med Gas Res 1:12. doi:10.1186/2045-9912-1-12

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Ono H, Nishijima Y, Adachi N et al (2012) Hydrogen(H2) treatment for acute erythymatous skin diseases. A report of 4 patients with safety data and a non-controlled feasibility study with H2 concentration measurement on two volunteers. Med Gas Res 2:14. doi:10.1186/2045-9912-2-14

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Ono H, Nishijima Y, Adachi N et al (2012) A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med Gas Res 2:21. doi:10.1186/2045-9912-2-21

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328:321–326. doi:10.1126/science.1172539

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Hyun DH, Emerson SS, Jo DG et al (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci U S A 103:19908–19912. doi:10.1073/pnas.0608008103

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Li D, Sun F, Wang K (2003) Caloric restriction retards age-related changes in rat retina. Biochem Biophys Res Commun 309:457–463

    CAS  PubMed  Google Scholar 

  99. Obin M, Pike A, Halbleib M et al (2000) Calorie restriction modulates age-dependent changes in the retinas of Brown Norway rats. Mech Ageing Dev 114:133–147

    CAS  PubMed  Google Scholar 

  100. Kong YX, van Bergen N, Bui BV et al (2012) Impact of aging and diet restriction on retinal function during and after acute intraocular pressure injury. Neurobiol Aging 33:1126.e15–e25. doi:10.1016/j.neurobiolaging.2011.11.026

    Google Scholar 

  101. Lucas DR, Newhouse JP (1957) The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58:193–201

    CAS  PubMed  Google Scholar 

  102. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45:583–595. doi:10.1016/j.neuint.2004.03.007

    CAS  PubMed  Google Scholar 

  103. Hallett PJ, Standaert DG (2004) Rationale for and use of NMDA receptor antagonists in Parkinson’s disease. Pharmacol Ther 102:155–174. doi:10.1016/j.pharmthera.2004.04.001

    CAS  PubMed  Google Scholar 

  104. Mittal SK, Eddy C (2013) The role of dopamine and glutamate modulation in Huntington disease. Behav Neurol 26:255–263. doi:10.3233/BEN-2012-120268

    PubMed  Google Scholar 

  105. Seki M, Lipton SA (2008) Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma. Prog Brain Res 173:495–510. doi:10.1016/S0079-6123(08)01134-5

    CAS  PubMed  Google Scholar 

  106. Harada T, Harada C, Nakamura K et al (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770. doi:10.1172/JCI30178

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Martin KR, Levkovitch-Verbin H, Valenta D et al (2002) Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Invest Ophthalmol Vis Sci 43:2236–2243

    PubMed  Google Scholar 

  108. Ishikawa M, Yoshitomi T, Zorumski CF et al (2011) Downregulation of glutamine synthetase via GLAST suppression induces retinal axonal swelling in a rat ex vivo hydrostatic pressure model. Invest Ophthalmol Vis Sci 52:6604–6616. doi:10.1167/iovs.11-7375

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Lafon-Cazal M, Pietri S, Culcasi M et al (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537. doi:10.1038/364535a0

    CAS  PubMed  Google Scholar 

  110. Patel M, Day BJ, Crapo JD et al (1996) Requirement for superoxide in excitotoxic cell death. Neuron 16:345–355

    CAS  PubMed  Google Scholar 

  111. Dugan LL, Sensi SL, Canzoniero LM et al (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to n-methyl-d-aspartate. J Neurosci 15:6377–6388

    CAS  PubMed  Google Scholar 

  112. Borg J, London J (2002) Copper/zinc superoxide dismutase overexpression promotes survival of cortical neurons exposed to neurotoxins in vitro. J Neurosci Res 70:180–189. doi:10.1002/jnr.10404

    CAS  PubMed  Google Scholar 

  113. Boulos S, Meloni BP, Arthur PG et al (2007) Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. J Neurosci Res 85:3089–3097. doi:10.1002/jnr.21429

    CAS  PubMed  Google Scholar 

  114. Yuki K, Yoshida T, Miyake S et al (2013) Neuroprotective role of superoxide dismutase 1 in retinal ganglion cells and inner nuclear layer cells against n-methyl-d-aspartate-induced cytotoxicity. Exp Eye Res 115:230–238. doi:10.1016/j.exer.2013.07.002

    CAS  PubMed  Google Scholar 

  115. Hironaka K, Inokuchi Y, Fujisawa T et al (2011) Edaravone-loaded liposomes for retinal protection against oxidative stress-induced retinal damage. Eur J Pharm Biopharm 79:119–125. doi:10.1016/j.ejpb.2011.01.019

    CAS  PubMed  Google Scholar 

  116. Sakamoto K, Suzuki Y, Kurauchi Y et al (2014) Hydrogen sulfide attenuates NMDA-induced neuronal injury via its anti-oxidative activity in the rat retina. Exp Eye Res. doi:10.1016/j.exer.2014.01.008

    Google Scholar 

  117. Kim KA, Kang KD, Lee EH et al (2011) Edible wild vegetable, Gymnaster koraiensis protects retinal ganglion cells against oxidative stress. Food Chem Toxicol 49:2131–2143. doi:10.1016/j.fct.2011.05.028

    CAS  PubMed  Google Scholar 

  118. Akane M, Shimazawa M, Inokuchi Y et al (2011) SUN N8075, a novel radical scavenger, protects against retinal cell death in mice. Neurosci Lett 488:87–91. doi:10.1016/j.neulet.2010.11.008

    CAS  PubMed  Google Scholar 

  119. Inokuchi Y, Imai S, Nakajima Y et al (2009) Edaravone, a free radical scavenger, protects against retinal damage in vitro and in vivo. J Pharmacol Exp Ther 329:687–698. doi:10.1124/jpet.108.148676

    CAS  PubMed  Google Scholar 

  120. Nakajima Y, Inokuchi Y, Shimazawa M et al (2008) Astaxanthin, a dietary carotenoid, protects retinal cells against oxidative stress in-vitro and in mice in-vivo. J Pharm Pharmacol 60:1365–1374. doi:10.1211/jpp/60.10.0013

    CAS  PubMed  Google Scholar 

  121. Nakajima Y, Inokuchi Y, Nishi M et al (2008) Coenzyme Q10 protects retinal cells against oxidative stress in vitro and in vivo. Brain Res 1226:226–233. doi:10.1016/j.brainres.2008.06.026

    CAS  PubMed  Google Scholar 

  122. Inomata Y, Nakamura H, Tanito M et al (2006) Thioredoxin inhibits NMDA-induced neurotoxicity in the rat retina. J Neurochem 98:372–385. doi:10.1111/j.1471-4159.2006.03871.x

    CAS  PubMed  Google Scholar 

  123. Aruoma OI, Moncaster JA, Walsh DT et al (2003) The antioxidant cocktail, effective microorganism X (EM-X), protects retinal neurons in rats against n-methyl-d-aspartate excitotoxicity in vivo. Free Radic Res 37:91–97

    CAS  PubMed  Google Scholar 

  124. Feng S, Yang Q, Liu M et al (2011) Edaravone for acute ischaemic stroke. Cochrane Database Syst Rev 12, CD007230. doi:10.1002/14651858.CD007230.pub2

    PubMed  Google Scholar 

  125. Shimazaki H, Hironaka K, Fujisawa T et al (2011) Edaravone-loaded liposome eyedrops protect against light-induced retinal damage in mice. Invest Ophthalmol Vis Sci 52:7289–7297. doi:10.1167/iovs.11-7983

    CAS  PubMed  Google Scholar 

  126. Tezel G (2008) TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421. doi:10.1016/S0079-6123(08)01128-X

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Tezel G, Wax MB (2000) Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 20:8693–8700

    CAS  PubMed  Google Scholar 

  128. Tezel G, Li LY, Patil RV et al (2001) TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 42:1787–1794

    CAS  PubMed  Google Scholar 

  129. Sawada H, Fukuchi T, Tanaka T et al (2010) Tumor necrosis factor-alpha concentrations in the aqueous humor of patients with glaucoma. Invest Ophthalmol Vis Sci 51:903–906. doi:10.1167/iovs.09-4247

    PubMed  Google Scholar 

  130. Nakazawa T, Nakazawa C, Matsubara A et al (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 26:12633–12641. doi:10.1523/JNEUROSCI.2801-06.2006

    CAS  PubMed  Google Scholar 

  131. Roh M, Zhang Y, Murakami Y et al (2012) Etanercept, a widely used inhibitor of tumor necrosis factor-alpha (TNF-alpha), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One 7:e40065. doi:10.1371/journal.pone.0040065

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Tezel G, Yang X (2004) Caspase-independent component of retinal ganglion cell death, in vitro. Invest Ophthalmol Vis Sci 45:4049–4059. doi:10.1167/iovs.04-0490

    PubMed  Google Scholar 

  133. Fatma N, Kubo E, Sen M et al (2008) Peroxiredoxin 6 delivery attenuates TNF-alpha-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasis. Brain Res 1233:63–78. doi:10.1016/j.brainres.2008.07.076

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Kitaoka Y, Munemasa Y, Hayashi Y et al (2011) Axonal protection by 17beta-estradiol through thioredoxin-1 in tumor necrosis factor-induced optic neuropathy. Endocrinology 152:2775–2785. doi:10.1210/en.2011-0046

    CAS  PubMed  Google Scholar 

  135. Yuki K, Ozawa Y, Yoshida T et al (2011) Retinal ganglion cell loss in superoxide dismutase 1 deficiency. Invest Ophthalmol Vis Sci 52:4143–4150. doi:10.1167/iovs.10-6294

    CAS  PubMed  Google Scholar 

  136. Bach M, Unsoeld AS, Philippin H et al (2006) Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci 47:4881–4887. doi:10.1167/iovs.05-0875

    PubMed  Google Scholar 

  137. Nagaraju M, Saleh M, Porciatti V (2007) IOP-dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Invest Ophthalmol Vis Sci 48:4573–4579. doi:10.1167/iovs.07-0582

    PubMed Central  PubMed  Google Scholar 

  138. Kang JH, Pasquale LR, Willett W et al (2003) Antioxidant intake and primary open-angle glaucoma: a prospective study. Am J Epidemiol 158:337–346

    PubMed  Google Scholar 

  139. Coleman AL, Stone KL, Kodjebacheva G et al (2008) Glaucoma risk and the consumption of fruits and vegetables among older women in the study of osteoporotic fractures. Am J Ophthalmol 145:1081–1089. doi:10.1016/j.ajo.2008.01.022

    PubMed  Google Scholar 

  140. Giaconi JA, Yu F, Stone KL et al (2012) The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African–American women in the study of osteoporotic fractures. Am J Ophthalmol 154:635–644. doi:10.1016/j.ajo.2012.03.048

    PubMed Central  PubMed  Google Scholar 

  141. Ramdas WD, Wolfs RC, Kiefte-de Jong JC et al (2012) Nutrient intake and risk of open-angle glaucoma: the Rotterdam study. Eur J Epidemiol 27:385–393. doi:10.1007/s10654-012-9672-z

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Wang SY, Singh K, Lin SC (2013) Glaucoma and vitamins A, C, and E supplement intake and serum levels in a population-based sample of the United States. Eye (Lond) 27:487–494. doi:10.1038/eye.2013.10

    CAS  Google Scholar 

  143. Obulesu M, Dowlathabad MR, Bramhachari PV (2011) Carotenoids and Alzheimer’s disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 59:535–541. doi:10.1016/j.neuint.2011.04.004

    CAS  PubMed  Google Scholar 

  144. Tafti M, Ghyselinck NB (2007) Functional implication of the vitamin A signaling pathway in the brain. Arch Neurol 64:1706–1711. doi:10.1001/archneur.64.12.1706

    PubMed  Google Scholar 

  145. Ahlemeyer B, Bauerbach E, Plath M et al (2001) Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radic Biol Med 30:1067–1077

    CAS  PubMed  Google Scholar 

  146. Purcell EF, Lerner LH, Kinsey VE (1954) Ascorbic acid in aqueous humor and serum of patients with and without cataract; physiologic significance of relative concentrations. AMA Arch Ophthalmol 51:1–6

    CAS  PubMed  Google Scholar 

  147. Yuki K, Murat D, Kimura I et al (2010) Reduced-serum vitamin C and increased uric acid levels in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 248:243–248. doi:10.1007/s00417-009-1183-6

    CAS  PubMed  Google Scholar 

  148. Zanon-Moreno V, Asensio-Marquez EM, Ciancotti-Oliver L et al (2013) Effects of polymorphisms in vitamin E-, vitamin C-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma. Mol Vis 19:231–242

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Zanon-Moreno V, Ciancotti-Olivares L, Asencio J et al (2011) Association between a SLC23A2 gene variation, plasma vitamin C levels, and risk of glaucoma in a Mediterranean population. Mol Vis 17:2997–3004

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Bjelakovic G, Nikolova D, Gluud LL et al (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857. doi:10.1001/jama.297.8.842

    CAS  PubMed  Google Scholar 

  151. Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783. doi:10.1038/nature07733

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947. doi:10.1038/nrd4002

    CAS  PubMed  Google Scholar 

  153. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 330:1029–1035. doi:10.1056/NEJM199404143301501

    Google Scholar 

  154. Omenn GS, Goodman GE, Thornquist MD et al (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155. doi:10.1056/NEJM199605023341802

    CAS  PubMed  Google Scholar 

  155. Klein EA, Thompson IM Jr, Tangen CM et al (2011) Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E cancer prevention trial (SELECT). JAMA 306:1549–1556. doi:10.1001/jama.2011.1437

    CAS  PubMed  Google Scholar 

  156. Ran Q, Liang H, Ikeno Y et al (2007) Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A Biol Sci Med Sci 62:932–942

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenya Yuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yuki, K. (2014). Antioxidative Treatment for Neuroprotection in Glaucoma. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics