Skip to main content

Neuroprotection for Photoreceptors

  • Chapter
  • First Online:
Neuroprotection and Neuroregeneration for Retinal Diseases
  • 791 Accesses

Abstract

Progressive dysfunction and death of photoreceptors is the major cause of loss of vision in most retinal diseases. Many studies investigating photoreceptor protection have used animal models, and some of the results have been implemented clinically. These include responsible gene applications, applying neurotrophic factors or antioxidants and blocking or preventing specific death signal transduction. Retinal prosthesis or appropriate cell transplantations have also been reported at the end stage of photoreceptor death. Conventional strategies for neuroprotection using neurotrophic factors or antioxidants have attempted to strengthen the cellular metabolism against variable stresses. However, not every application is well tolerated, although some clinical applications are ongoing. Recent understanding of photoreceptor cell death has led to targeting cell death initiation or blocking its execution. These include correcting the amount of intracellular cGMP, modification of epigenetic processes, and prevention of some proteolytic enzyme activity, such as calpains. Further, another approach from the aspect of the drug delivery system has also been developed. An improved design of photoreceptor protection will require a better understanding of the photoreceptor neurodegenerative mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG (2013) Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 37:114–140. doi:10.1016/j.preteyeres.2013.08.001

    Article  PubMed  Google Scholar 

  2. Komeima K, Rogers BS, Lu L, Campochiaro PA (2006) Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci USA 103(30):11300–11305. doi:10.1073/pnas.0604056103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ohnaka M, Miki K, Gong YY, Stevens R, Iwase T, Hackett SF, Campochiaro PA (2012) Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa. J Neurochem 122(5):1047–1053. doi:10.1111/j.1471-4159.2012.07842.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hisatomi T, Sakamoto T, Murata T, Yamanaka I, Oshima Y, Hata Y, Ishibashi T, Inomata H, Susin SA, Kroemer G (2001) Relocalization of apoptosis-inducing factor in photoreceptor apoptosis induced by retinal detachment in vivo. Am J Pathol 158(4):1271–1278. doi:10.1016/S0002-9440(10)64078-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Piano I, Novelli E, Gasco P, Ghidoni R, Strettoi E, Gargini C (2013) Cone survival and preservation of visual acuity in an animal model of retinal degeneration. Eur J Neurosci 37(11):1853–1862. doi:10.1111/ejn.12196

    Article  PubMed  Google Scholar 

  6. van Soest S, Westerveld A, de Jong PT, Bleeker-Wagemakers EM, Bergen AA (1999) Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol 43(4):321–334

    Article  PubMed  Google Scholar 

  7. Makiyama Y, Ooto S, Hangai M, Takayama K, Uji A, Oishi A, Ogino K, Nakagawa S, Yoshimura N (2013) Macular cone abnormalities in retinitis pigmentosa with preserved central vision using adaptive optics scanning laser ophthalmoscopy. PLoS One 8(11):e79447. doi:10.1371/journal.pone.0079447

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lockshin RA, Williams CM (1965) Programmed cell death–I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol 11:123–133

    Article  CAS  PubMed  Google Scholar 

  9. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75(4):653–660

    Article  CAS  PubMed  Google Scholar 

  11. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2(9):647–656. doi:10.1038/nrc883

    Article  CAS  PubMed  Google Scholar 

  12. Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12(1):44–52. doi:10.1038/nn.2234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kunchithapautham K, Rohrer B (2007) Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 3(5):433–441

    Article  CAS  PubMed  Google Scholar 

  14. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752. doi:10.1038/nrm2239

    Article  CAS  PubMed  Google Scholar 

  15. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495. doi:10.1038/82732

    Article  CAS  PubMed  Google Scholar 

  16. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. doi:10.1016/j.cell.2009.05.037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sato K, Li S, Gordon WC, He J, Liou GI, Hill JM, Travis GH, Bazan NG, Jin M (2013) Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci Official J Soc Neurosci 33(44):17458–17468. doi:10.1523/JNEUROSCI.1380-13.2013

    Article  CAS  Google Scholar 

  18. Nakazawa T, Kayama M, Ryu M, Kunikata H, Watanabe R, Yasuda M, Kinugawa J, Vavvas D, Miller JW (2011) Tumor necrosis factor-alpha mediates photoreceptor death in a rodent model of retinal detachment. Invest Ophthalmol Vis Sci 52(3):1384–1391. doi:10.1167/iovs.10-6509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Eskelinen EL (2008) To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 4(2):257–260

    Article  PubMed  Google Scholar 

  20. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  CAS  PubMed  Google Scholar 

  21. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vision Res 42(4):517–525

    Article  CAS  PubMed  Google Scholar 

  22. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809. doi:10.1016/S0140-6736(06)69740-7

    Article  CAS  PubMed  Google Scholar 

  23. Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, Banfi S, Surace EM, Sun J, Acerra C, Wright JF, Wellman J, High KA, Auricchio A, Bennett J, Simonelli F (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 120(6):1283–1291. doi:10.1016/j.ophtha.2012.11.048

    Article  PubMed Central  PubMed  Google Scholar 

  24. Cideciyan AV, Jacobson SG, Beltran WA, Hauswirth WW, Aguirre GD (2013) Reply to Townes-Anderson: RPE65 gene therapy does not alter the natural history of retinal degeneration. Proc Natl Acad Sci USA 110(19):E1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Montana CL, Kolesnikov AV, Shen SQ, Myers CA, Kefalov VJ, Corbo JC (2013) Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl Acad Sci USA 110(5):1732–1737. doi:10.1073/pnas.1214387110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Aloe L (2004) Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. Trends Cell Biol 14(7):395–399. doi:10.1016/j.tcb.2004.05.011

    Article  CAS  PubMed  Google Scholar 

  27. Tao W, Wen R, Goddard MB, Sherman SD, O'Rourke PJ, Stabila PF, Bell WJ, Dean BJ, Kauper KA, Budz VA, Tsiaras WG, Acland GM, Pearce-Kelling S, Laties AM, Aguirre GD (2002) Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 43(10):3292–3298

    PubMed  Google Scholar 

  28. Okoye G, Zimmer J, Sung J, Gehlbach P, Deering T, Nambu H, Hackett S, Melia M, Esumi N, Zack DJ, Campochiaro PA (2003) Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death from rhodopsin mutation or oxidative damage. J Neurosci Official J Soc Neurosci 23(10):4164–4172

    CAS  Google Scholar 

  29. Lavail MM (2005) Survival factors for treatment of retinal degenerative disorders: preclinical gains and issues for translation into clinical studies. Retina 25(8 Suppl):S25–S26

    Article  PubMed  Google Scholar 

  30. MacDonald IM, Sauve Y, Sieving PA (2007) Preventing blindness in retinal disease: ciliary neurotrophic factor intraocular implants. Can J Ophthalmol 42(3):399–402. doi:10.3129/can j ophthalmol.i07-039

    Article  PubMed  Google Scholar 

  31. Birch DG, Weleber RG, Duncan JL, Jaffe GJ, Tao W (2013) Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. Am J Ophthalmol 156(2):283–292. doi:10.1016/j.ajo.2013.03.021, e281

    Article  CAS  PubMed  Google Scholar 

  32. Rhee KD, Nusinowitz S, Chao K, Yu F, Bok D, Yang XJ (2013) CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Muller glial cells. Proc Natl Acad Sci USA 110(47):E4520–E4529. doi:10.1073/pnas.1303604110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yu DY, Cringle SJ (2005) Retinal degeneration and local oxygen metabolism. Exp Eye Res 80(6):745–751. doi:10.1016/j.exer.2005.01.018

    Article  CAS  PubMed  Google Scholar 

  34. Ahuja-Jensen P, Johnsen-Soriano S, Ahuja S, Bosch-Morell F, Sancho-Tello M, Romero FJ, Abrahamson M, van Veen T (2007) Low glutathione peroxidase in rd1 mouse retina increases oxidative stress and proteases. Neuroreport 18(8):797–801. doi:10.1097/WNR.0b013e3280c1e344

    Article  CAS  PubMed  Google Scholar 

  35. Bresnick GH (1970) Oxygen-induced visual cell degeneration in the rabbit. Invest Ophthalmol 9(5):372–387

    CAS  PubMed  Google Scholar 

  36. Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25(5):490–513. doi:10.1016/j.preteyeres.2006.07.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Berson EL (1993) Retinitis pigmentosa. The Friedenwald lecture. Invest Ophthalmol Vis Sci 34(5):1659–1676

    CAS  PubMed  Google Scholar 

  38. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Willett WC (2012) Omega-3 intake and visual acuity in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol 130(6):707–711. doi:10.1001/archophthalmol.2011.2580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Trifunovic D, Sahaboglu A, Kaur J, Mencl S, Zrenner E, Ueffing M, Arango-Gonzalez B, Paquet-Durand F (2012) Neuroprotective strategies for the treatment of inherited photoreceptor degeneration. Curr Mol Med 12(5):598–612

    Article  CAS  PubMed  Google Scholar 

  40. Jin ZB, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, Iwata T, Takahashi M (2011) Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6(2):e17084. doi:10.1371/journal.pone.0017084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rhee KD, Ruiz A, Duncan JL, Hauswirth WW, Lavail MM, Bok D, Yang XJ (2007) Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 48(3):1389–1400. doi:10.1167/iovs.06-0677

    Article  PubMed  Google Scholar 

  42. Arshavsky VY, Wensel TG (2013) Timing is everything: GTPase regulation in phototransduction. Invest Ophthalmol Vis Sci 54(12):7725–7733. doi:10.1167/iovs.13-13281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11(4):177–185. doi:10.1016/j.molmed.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  44. Semple-Rowland SL, Cheng KM (1999) rd and rc chickens carry the same GC1 null allele (GUCY1*). Exp Eye Res 69(5):579–581. doi:10.1006/exer.1999.0743

    Article  CAS  PubMed  Google Scholar 

  45. Fabian E, Reglodi D, Mester L, Szabo A, Szabadfi K, Tamas A, Toth G, Kovacs K (2012) Effects of PACAP on intracellular signaling pathways in human retinal pigment epithelial cells exposed to oxidative stress. J Mol Neurosci 48(3):493–500. doi:10.1007/s12031-012-9812-7

    Article  CAS  PubMed  Google Scholar 

  46. Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219(2):243–250. doi:10.1002/jcp.21678

    Article  CAS  PubMed  Google Scholar 

  47. Sancho-Pelluz J, Alavi MV, Sahaboglu A, Kustermann S, Farinelli P, Azadi S, van Veen T, Romero FJ, Paquet-Durand F, Ekstrom P (2010) Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse. Cell Death Disease 1:e24. doi:10.1038/cddis.2010.4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Uehara N, Miki K, Tsukamoto R, Matsuoka Y, Tsubura A (2006) Nicotinamide blocks N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in rats through poly (ADP-ribose) polymerase activity and Jun N-terminal kinase/activator protein-1 pathway inhibition. Exp Eye Res 82(3):488–495. doi:10.1016/j.exer.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  49. Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 8(5):368–378. doi:10.1038/nrn2124

    Article  CAS  PubMed  Google Scholar 

  50. Paquet-Durand F, Johnson L, Ekstrom P (2007) Calpain activity in retinal degeneration. J Neurosci Res 85(4):693–702. doi:10.1002/jnr.21151

    Article  CAS  PubMed  Google Scholar 

  51. Oka T, Walkup RD, Tamada Y, Nakajima E, Tochigi A, Shearer TR, Azuma M (2006) Amelioration of retinal degeneration and proteolysis in acute ocular hypertensive rats by calpain inhibitor ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-me thylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester. Neuroscience 141(4):2139–2145. doi:10.1016/j.neuroscience.2006.05.060

    Article  CAS  PubMed  Google Scholar 

  52. Wingrave JM, Sribnick EA, Wilford GG, Matzelle DD, Mou JA, Ray SK, Hogan EL, Banik NL (2004) Higher calpastatin levels correlate with resistance to calpain-mediated proteolysis and neuronal apoptosis in juvenile rats after spinal cord injury. J Neurotrauma 21(9):1240–1254. doi:10.1089/neu.2004.21.1240

    Article  PubMed  Google Scholar 

  53. Paquet-Durand F, Sanges D, McCall J, Silva J, van Veen T, Marigo V, Ekstrom P (2010) Photoreceptor rescue and toxicity induced by different calpain inhibitors. J Neurochem 115(4):930–940. doi:10.1111/j.1471-4159.2010.06983.x

    Article  CAS  PubMed  Google Scholar 

  54. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8):623–634

    Article  CAS  PubMed  Google Scholar 

  55. Gribkoff VK, Starrett JE Jr, Dworetzky SI (1997) The pharmacology and molecular biology of large-conductance calcium-activated (BK) potassium channels. Adv Pharmacol 37:319–348

    Article  CAS  PubMed  Google Scholar 

  56. Gribkoff VK, Starrett JE Jr, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW (2001) Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 7(4):471–477. doi:10.1038/86546

    Article  CAS  PubMed  Google Scholar 

  57. Dal-Cim T, Martins WC, Santos AR, Tasca CI (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca(2)+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220. doi:10.1016/j.neuroscience.2011.03.022

    Article  CAS  PubMed  Google Scholar 

  58. Tsuruma K, Tanaka Y, Shimazawa M, Mashima Y, Hara H (2011) Unoprostone reduces oxidative stress- and light-induced retinal cell death, and phagocytotic dysfunction, by activating BK channels. Mol Vis 17:3556–3565

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Cuppoletti J, Malinowska DH, Tewari KP, Chakrabarti J, Ueno R (2007) Cellular and molecular effects of unoprostone as a BK channel activator. Biochim Biophys Acta 1768(5):1083–1092. doi:10.1016/j.bbamem.2006.12.015

    Article  CAS  PubMed  Google Scholar 

  60. Tawada A, Sugawara T, Ogata K, Hagiwara A, Yamamoto S (2013) Improvement of central retinal sensitivity 6 months after topical isopropyl unoprostone in patients with retinitis pigmentosa. Indian J Ophthalmol 61(3):95–99. doi:10.4103/0301-4738.109377

    Article  PubMed Central  PubMed  Google Scholar 

  61. Tokuda T, Asano R, Sugitani S, Terasawa Y, Nunoshita M, Nakauchi K, Fujikado T, Tano Y, Ohta J (2007) In vivo stimulation on rabbit retina using CMOS LSI-based multi-chip flexible stimulator for retinal prosthesis. Conf Proc IEEE Eng Med Biol 2007:5791–5794. doi:10.1109/IEMBS.2007.4353663

    CAS  Google Scholar 

  62. Feucht M, Laube T, Bornfeld N, Walter P, Velikay-Parel M, Hornig R, Richard G (2005) Development of an epiretinal prosthesis for stimulation of the human retina. Der Ophthalmologe (Zeitschrift der Deutschen Ophthalmol Gesellschaft) 102(7):688–691. doi:10.1007/s00347-005-1186-6

    Article  CAS  Google Scholar 

  63. Sahni JN, Angi M, Irigoyen C, Semeraro F, Romano MR, Parmeggiani F (2011) Therapeutic challenges to retinitis pigmentosa: from neuroprotection to gene therapy. Curr Genom 12(4):276–284. doi:10.2174/138920211795860062

    Article  CAS  Google Scholar 

  64. Abe T, Yoshida M, Yoshioka Y, Wakusawa R, Tokita-Ishikawa Y, Seto H, Tamai M, Nishida K (2007) Iris pigment epithelial cell transplantation for degenerative retinal diseases. Prog Retin Eye Res 26(3):302–321. doi:10.1016/j.preteyeres.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  65. Jin ZB, Takahashi M (2012) Generation of retinal cells from pluripotent stem cells. Prog Brain Res 201:171–181. doi:10.1016/B978-0-444-59544-7.00008-1

    Article  PubMed  Google Scholar 

  66. West EL, Gonzalez-Cordero A, Hippert C, Osakada F, Martinez-Barbera JP, Pearson RA, Sowden JC, Takahashi M, Ali RR (2012) Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells 30(7):1424–1435. doi:10.1002/stem.1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Grisanti S, Tatar O (2008) The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog Retin Eye Res 27(4):372–390. doi:10.1016/j.preteyeres.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  68. Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 347(6288):83–86. doi:10.1038/347083a0

    Article  CAS  PubMed  Google Scholar 

  69. Pilli S, Kotsolis A, Spaide RF, Slakter J, Freund KB, Sorenson J, Klancnik J, Cooney M (2008) Endophthalmitis associated with intravitreal anti-vascular endothelial growth factor therapy injections in an office setting. Am J Ophthalmol 145(5):879–882. doi:10.1016/j.ajo.2007.12.036

    Article  CAS  PubMed  Google Scholar 

  70. Nagai N, Kaji H, Onami H, Ishikawa Y, Nishizawa M, Osumi N, Nakazawa T, Abe T (2013) A polymeric device for controlled trans-scleral multi-drug delivery to the posterior segment of the eye. Acta Biomater 10:680–687. doi:10.1016/j.actbio.2013.11.004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Abe, T., Nagai, N. (2014). Neuroprotection for Photoreceptors. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics