Skip to main content

Influenza Virus, Overview: Structures, Infection Mechanisms and Antivirals

  • Living reference work entry
  • First Online:
Glycoscience: Biology and Medicine

Abstract

Hemagglutinin (HA) and neuraminidase (NA) are the two major surface proteins of influenza A virus (IAV). Initial attachment of the virus to the host cell is mediated by the binding of terminal sialic acids (Sia) of glycoconjugates to HA. At the final step of the infectious cycle NA cleaves Sia to ensure virus release from the cell surface. In this overview focus will be given to the structural details of Sia receptor binding and Sia cleavage and how this information in the case of NA has enabled the development of potent sialomimetic drugs by structure-based drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Ghafar A-N et al (2008) Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med 358:261–273

    CAS  PubMed  Google Scholar 

  • Abed Y, Pizzorno A, Bouhy X, Boivin G (2011) Role of permissive neuraminidase mutations in influenza A/Brisbane/59/2007-like (H1N1) viruses. PLoS Pathog 7:e1002431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Air GM (1981) Sequence relationships among the hemagglutinin genes of 12 subtypes of influenza A virus. Proc Natl Acad Sci U S A 78:7639–7643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amaro RE et al (2011) Mechanism of 150-cavity formation in influenza neuraminidase. Nat Commun 2:388

    PubMed Central  PubMed  Google Scholar 

  • Aoki FY, Hayden FG (2013) The beneficial effects of neuraminidase inhibitor drug therapy on severe patient outcomes during the 2009–2010 influenza A virus subtype H1N1 pandemic. J Infect Dis 207:547–549

    PubMed  Google Scholar 

  • Bateman AC et al (2010) Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of NeuAc{alpha}2-6 glycans. J Biol Chem 285:34016–34026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baum LG, Paulson JC (1990) Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem Suppl 40:35–38

    CAS  PubMed  Google Scholar 

  • Blixt O et al (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101:17033–17038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calder LJ, Wasilewski S, Berriman JA, Rosenthal PB (2010) Structural organization of a filamentous influenza A virus. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1002123107

    PubMed Central  PubMed  Google Scholar 

  • Chandrasekaran A et al (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol 26:107–113

    CAS  PubMed  Google Scholar 

  • Chen BJ, Leser GP, Morita E, Lamb RA (2007) Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol 81:7111–7123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen BJ, Leser GP, Jackson D, Lamb RA (2008) The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol 82:10059–10070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chou HH et al (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci U S A 95:11751–11756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman MT, Dowdle WR, Pereira HG, Schild GC, Chang WK (1968) The Hong Kong-68 influenza A2 variant. Lancet 2:1384–1386

    CAS  PubMed  Google Scholar 

  • Collins PJ et al (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453:1258–1261

    CAS  PubMed  Google Scholar 

  • Colman PM, Varghese JN, Laver WG (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303:41–44

    CAS  PubMed  Google Scholar 

  • Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23

    CAS  PubMed  Google Scholar 

  • Costa T et al (2012) Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species. Vet Res 43:28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Couceiro JN, Paulson JC, Baum LG (1993) Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 29:155–165

    CAS  PubMed  Google Scholar 

  • Daly JM et al (2008) Transmission of equine influenza virus to English foxhounds. Emerg Infect Dis 14:461–464

    PubMed Central  PubMed  Google Scholar 

  • Eisen MB, Sabesan S, Skehel JJ, Wiley DC (1997) Binding of the influenza A virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography. Virology 232:19–31

    CAS  PubMed  Google Scholar 

  • França M, Stallknecht DE, Howerth EW (2013) Expression and distribution of sialic acid influenza virus receptors in wild birds. Avian Pathol J WVPA 42:60–71

    Google Scholar 

  • Gambaryan AS et al (1997) Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology 232:345–350

    CAS  PubMed  Google Scholar 

  • Gambaryan AS et al (1998) Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties on H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 247:170–177

    CAS  PubMed  Google Scholar 

  • Gambaryan A, Webster R, Matrosovich M (2002) Differences between influenza virus receptors on target cells of duck and chicken. Arch Virol 147:1197–1208

    CAS  PubMed  Google Scholar 

  • Gamblin SJ et al (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303:1838–1842

    CAS  PubMed  Google Scholar 

  • Gao Y et al (2009) Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog 5:e1000709

    PubMed Central  PubMed  Google Scholar 

  • Garten W, Klenk HD (1999) Understanding influenza virus pathogenicity. Trends Microbiol 7:99–100

    CAS  PubMed  Google Scholar 

  • Garten RJ et al (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ginting TE et al (2012) Amino acid changes in hemagglutinin contribute to the replication of oseltamivir-resistant H1N1 influenza viruses. J Virol 86:121–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan Y, Smith GJD, Webby R, Webster RG (2009) Molecular epidemiology of H5N1 avian influenza. Rev Sci Tech Int Off Epizoot 28:39–47

    CAS  Google Scholar 

  • Guo C-T et al (2007) The quail and chicken intestine have sialyl-galactose sugar chains responsible for the binding of influenza A viruses to human type receptors. Glycobiology 17:713–724

    CAS  PubMed  Google Scholar 

  • Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2001) X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A 98:11181–11186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2003) X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus. Virology 309:209–218

    CAS  PubMed  Google Scholar 

  • Hensley SE et al (2009) Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326:734–736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herfst S et al (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541

    CAS  PubMed  Google Scholar 

  • Herlocher ML et al (2002) Influenza virus carrying an R292K mutation in the neuraminidase gene is not transmitted in ferrets. Antiviral Res 54:99–111

    CAS  PubMed  Google Scholar 

  • Herlocher ML et al (2004) Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. J Infect Dis 190:1627–1630

    CAS  PubMed  Google Scholar 

  • Ilyushina NA, Bovin NV, Webster RG (2012) Decreased neuraminidase activity is important for the adaptation of H5N1 influenza virus to human airway epithelium. J Virol 86:4724–4733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imai M, Kawaoka Y (2012) The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr Opin Virol 2:160–167

    CAS  PubMed  Google Scholar 

  • Imai M et al (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito T et al (1997) Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227:493–499

    CAS  PubMed  Google Scholar 

  • Ito T et al (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito T et al (2000) Recognition of N-glycolylneuraminic acid linked to galactose by the alpha2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J Virol 74:9300–9305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ives JAL et al (2002) The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo. Antiviral Res 55:307–317

    CAS  PubMed  Google Scholar 

  • Iwatsuki-Horimoto K et al (2006) The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J Virol 80:5233–5240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayaraman A et al (2012) Decoding the distribution of glycan receptors for human-adapted influenza A viruses in ferret respiratory tract. PLoS One 7:e27517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kandun IN et al (2006) Three Indonesian clusters of H5N1 virus infection in 2005. N Engl J Med 355:2186–2194

    CAS  PubMed  Google Scholar 

  • Kawaoka Y, Krauss S, Webster RG (1989) Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol 63:4603–4608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim CU et al (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119:681–690

    CAS  PubMed  Google Scholar 

  • Kimble B, Nieto GR, Perez DR (2010) Characterization of influenza virus sialic acid receptors in minor poultry species. Virol J 7:365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumari K et al (2007) Receptor binding specificity of recent human H3N2 influenza viruses. Virol J 4:42

    PubMed Central  PubMed  Google Scholar 

  • Lee SM-Y, Yen H-L (2012) Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection. Antiviral Res 96:391–404

    CAS  PubMed  Google Scholar 

  • Leser GP, Lamb RA (2005) Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology 342:215–227

    CAS  PubMed  Google Scholar 

  • Li Q et al (2010) The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol. doi:10.1038/nsmb.1909

    Google Scholar 

  • Li Q et al (2013) Preliminary report: epidemiology of the avian influenza A (H7N9) outbreak in China. N Engl J Med. doi:10.1056/NEJMoa1304617

    Google Scholar 

  • Liu J et al (2009) Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proc Natl Acad Sci U S A 106:17175–17180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma W, Kahn RE, Richt JA (2008) The pig as a mixing vessel for influenza viruses: human and veterinary implications. J Mol Genet Med Int J Biomed Res 3:158–166

    Google Scholar 

  • Maines TR et al (2006) Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc Natl Acad Sci U S A 103:12121–12126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matrosovich MN et al (1997) Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233:224–234

    CAS  PubMed  Google Scholar 

  • Matrosovich M et al (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk H-D (2004) Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101:4620–4624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matrosovich M, Stech J, Klenk HD (2009) Influenza receptors, polymerase and host range. Rev Sci Tech Int Off Epizoot 28:203–217

    CAS  Google Scholar 

  • Matsuoka Y, Lamirande EW, Subbarao K (2009) The ferret model for influenza. Curr Protoc Microbiol. Chapter 15, Unit 15G.2

    Google Scholar 

  • McCown MF, Pekosz A (2005) The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J Virol 79:3595–3605

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCown MF, Pekosz A (2006) Distinct domains of the influenza a virus M2 protein cytoplasmic tail mediate binding to the M1 protein and facilitate infectious virus production. J Virol 80:8178–8189

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKimm-Breschkin JL (2013) Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respir Viruses 7(Suppl 1):25–36

    CAS  PubMed  Google Scholar 

  • Meindl P, Bodo G, Palese P, Schulman J, Tuppy H (1974) Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. Virology 58:457–463

    CAS  PubMed  Google Scholar 

  • Monto AS, Kendal AP (1973) Effect of neuraminidase antibody on Hong Kong influenza. Lancet 1:623–625

    CAS  PubMed  Google Scholar 

  • Nelli RK et al (2010) Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet Res 6:4

    PubMed Central  PubMed  Google Scholar 

  • Neumann G, Green MA, Macken CA (2010) Evolution of highly pathogenic avian H5N1 influenza viruses and the emergence of dominant variants. J Gen Virol 91:1984–1995

    CAS  PubMed  Google Scholar 

  • Nicholls JM et al (2007) Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat Med 13:147–149

    CAS  PubMed  Google Scholar 

  • Ning Z-Y et al (2009) Detection of expression of influenza virus receptors in tissues of BALB/c mice by histochemistry. Vet Res Commun 33:895–903

    PubMed  Google Scholar 

  • Nobusawa E et al (1991) Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182:475–485

    CAS  PubMed  Google Scholar 

  • Palese P, Tobita K, Ueda M, Compans RW (1974) Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410

    CAS  PubMed  Google Scholar 

  • Patterson KD, Pyle GF (1991) The geography and mortality of the 1918 influenza pandemic. Bull Hist Med 65:4–21

    CAS  PubMed  Google Scholar 

  • Ramos I et al (2013) H7N9 influenza viruses interact preferentially with α2,3-linked sialic acids and bind weakly to α2,6-linked sialic acids. J Gen Virol. doi:10.1099/vir.0.056184-0

    PubMed  Google Scholar 

  • Reid AH, Fanning TG, Hultin JV, Taubenberger JK (1999) Origin and evolution of the 1918 ‘Spanish’ influenza virus hemagglutinin gene. Proc Natl Acad Sci U S A 96:1651–1656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richard M et al (2012) Rescue of a H3N2 influenza virus containing a deficient neuraminidase protein by a hemagglutinin with a low receptor-binding affinity. PLoS One 7:e33880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts PC, Lamb RA, Compans RW (1998) The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation. Virology 240:127–137

    CAS  PubMed  Google Scholar 

  • Roberts KL, Leser GP, Ma C, Lamb RA (2013) The amphipathic helix of influenza a virus m2 protein is required for filamentous bud formation and scission of filamentous and spherical particles. J Virol 87:9973–9982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers GN, D’Souza BL (1989) Receptor binding properties of human and animal H1 influenza virus isolates. Virology 173:317–322

    CAS  PubMed  Google Scholar 

  • Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373

    CAS  PubMed  Google Scholar 

  • Rossman JS, Jing X, Leser GP, Lamb RA (2010) Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142:902–913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudrawar S et al (2010) Novel sialic acid derivatives lock open the 150-loop of an influenza A virus group-1 sialidase. Nat Commun 1:113

    PubMed Central  PubMed  Google Scholar 

  • Rudrawar S et al (2012) Synthesis and evaluation of novel 3-C-alkylated-Neu5Ac2en derivatives as probes of influenza virus sialidase 150-loop flexibility. Org Biomol Chem 10:8628–8639

    CAS  PubMed  Google Scholar 

  • Russell RJ et al (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443:45–49

    CAS  PubMed  Google Scholar 

  • Russell CA et al (2012) The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science 336:1541–1547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35

    CAS  PubMed  Google Scholar 

  • Samson M, Pizzorno A, Abed Y, Boivin G (2013) Influenza virus resistance to neuraminidase inhibitors. Antivir Res 98:174–185

    CAS  PubMed  Google Scholar 

  • Sauter NK et al (1989) Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic resonance study. Biochemistry (Mosc) 28:8388–8396

    CAS  Google Scholar 

  • Seto JT, Rott R (1966) Functional significance of sialidose during influenza virus multiplication. Virology 30:731–737

    CAS  PubMed  Google Scholar 

  • Shinya K et al (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436

    CAS  PubMed  Google Scholar 

  • Simonsen L et al (2013) Global mortality estimates for the 2009 influenza pandemic from the GLaMOR project: a modeling study. PLoS Med 10:e1001558

    PubMed Central  PubMed  Google Scholar 

  • Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569

    CAS  PubMed  Google Scholar 

  • Steinhauer DA (1999) Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258:1–20

    CAS  PubMed  Google Scholar 

  • Stevens J et al (2006a) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 355:1143–1155

    CAS  PubMed  Google Scholar 

  • Stevens J et al (2006b) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410

    CAS  PubMed  Google Scholar 

  • Sun X et al (2013a) Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep 3:769–778

    CAS  PubMed  Google Scholar 

  • Sun Y et al (2013b) Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol 87:2963–2968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki T et al (1997) Swine influenza virus strains recognize sialylsugar chains containing the molecular species of sialic acid predominantly present in the swine tracheal epithelium. FEBS Lett 404:192–196

    CAS  PubMed  Google Scholar 

  • Suzuki Y et al (2000) Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 74:11825–11831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda M, Leser GP, Russell CJ, Lamb RA (2003) Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci U S A 100:14610–14617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taubenberger JK, Kash JC (2010) Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7:440–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tharakaraman K et al (2013a) Structural determinants for naturally evolving H5N1 hemagglutinin to switch its receptor specificity. Cell 153:1475–1485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tharakaraman K et al (2013b) Glycan receptor binding of the influenza A virus H7N9 hemagglutinin. Cell 153:1486–1493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tong S et al (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9:e1003657

    PubMed Central  PubMed  Google Scholar 

  • Tumpey TM et al (2007) A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315:655–659

    CAS  PubMed  Google Scholar 

  • Ungchusak K et al (2005) Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med 352:333–340

    CAS  PubMed  Google Scholar 

  • Van der Laan JW et al (2008) Animal models in influenza vaccine testing. Expert Rev Vaccines 7:783–793

    PubMed  Google Scholar 

  • Van der Vries E et al (2012) H1N1 2009 pandemic influenza virus: resistance of the I223R neuraminidase mutant explained by kinetic and structural analysis. PLoS Pathog 8:e1002914

    PubMed Central  PubMed  Google Scholar 

  • Van Poucke SG, Nicholls JM, Nauwynck HJ, Van Reeth K (2010) Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virol J 7:38

    PubMed Central  PubMed  Google Scholar 

  • Van Riel D et al (2006) H5N1 virus attachment to lower respiratory tract. Science 312:399

    PubMed  Google Scholar 

  • Varghese JN, Laver WG, Colman PM (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303:35–40

    CAS  PubMed  Google Scholar 

  • Varki A (2001) Loss of N-glycolylneuraminic acid in humans: mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol Suppl 33:54–69

    Google Scholar 

  • Varki A (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446:1023–1029

    CAS  PubMed  Google Scholar 

  • Von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974

    Google Scholar 

  • Von Itzstein M et al (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423

    Google Scholar 

  • Wagner R, Matrosovich M, Klenk H-D (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12:159–166

    PubMed  Google Scholar 

  • Wan H, Perez DR (2006) Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 346:278–286

    CAS  PubMed  Google Scholar 

  • Wang H et al (2008b) Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet 371:1427–1434

    PubMed  Google Scholar 

  • Wang M et al (2011) Influenza A virus N5 neuraminidase has an extended 150-cavity. J Virol 85:8431–8435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S et al (2012) Transport of influenza virus neuraminidase (NA) to host cell surface is regulated by ARHGAP21 and Cdc42 proteins. J Biol Chem 287:9804–9816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe Y et al (2011) Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog 7:e1002068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe Y, Ibrahim MS, Suzuki Y, Ikuta K (2012) The changing nature of avian influenza A virus (H5N1). Trends Microbiol 20:11–20

    CAS  PubMed  Google Scholar 

  • Webby RJ, Webster RG, Richt JA (2007) Influenza viruses in animal wildlife populations. Curr Top Microbiol Immunol 315:67–83

    CAS  PubMed  Google Scholar 

  • Webster RG, Laver WG (1967) Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus. J Immunol Baltim Md 1950(99):49–55

    Google Scholar 

  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weis W et al (1988) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431

    CAS  PubMed  Google Scholar 

  • Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56:365–394

    CAS  PubMed  Google Scholar 

  • Wu Y et al (2013) Induced opening of influenza virus neuraminidase N2 150-loop suggests an important role in inhibitor binding. Sci Rep 3:1551

    PubMed Central  PubMed  Google Scholar 

  • Xiong X et al (2013a) Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature 497:392–396

    CAS  PubMed  Google Scholar 

  • Xiong X et al (2013b) Receptor binding by an H7N9 influenza virus from humans. Nature 499:496–499

    CAS  PubMed  Google Scholar 

  • Xu Q, Wang W, Cheng X, Zengel J, Jin H (2010) Influenza H1N1 A/Solomon Island/3/06 virus receptor binding specificity correlates with virus pathogenicity, antigenicity, and immunogenicity in ferrets. J Virol 84:4936–4945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu R et al (2012a) Functional balance of the hemagglutinin and neuraminidase activities accompanies the emergence of the 2009 H1N1 influenza pandemic. J Virol 86:9221–9232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu R, McBride R, Nycholat CM, Paulson JC, Wilson IA (2012b) Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic. J Virol 86:982–990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada S et al (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444:378–382

    CAS  PubMed  Google Scholar 

  • Yang Y, Halloran ME, Sugimoto JD, Longini IM Jr (2007) Detecting human-to-human transmission of avian influenza A (H5N1). Emerg Infect Dis 13:1348–1353

    PubMed Central  PubMed  Google Scholar 

  • Yen H-L et al (2007) Inefficient transmission of H5N1 influenza viruses in a ferret contact model. J Virol 81:6890–6898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W et al (2013) An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level. Science 340:1463–1467

    CAS  PubMed  Google Scholar 

  • Zhu X et al (2012b) Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic acid receptors. J Virol 86:13371–13383

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raphael Böhm or Mark von Itzstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this entry

Cite this entry

Böhm, R., Haselhorst, T., von Itzstein, M. (2014). Influenza Virus, Overview: Structures, Infection Mechanisms and Antivirals. In: Endo, T., Seeberger, P., Hart, G., Wong, CH., Taniguchi, N. (eds) Glycoscience: Biology and Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54836-2_148-1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54836-2_148-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Online ISBN: 978-4-431-54836-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics