Skip to main content

Dielectric Elastomers

  • Chapter
  • First Online:
Soft Actuators

Abstract

Electroactive polymer transducers have many features that are desirable for various devices. An especially attractive type of electroactive polymer is dielectric elastomer.

Dielectric elstomer, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid-state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Dielectric elastomers may also be used to generate electrical power from mechanical deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelrine R, Chiba S (1992) Review of artificial muscle approaches. In: Proceedings of the third international symposium on micromachine and human science, Nagoya, Japan

    Google Scholar 

  2. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High speed electrically actuated elastomers with over 100 % strain. Science 287(5454):836–839

    Article  CAS  Google Scholar 

  3. Oguro K, Fujiwara N, Asaka K, Onishi K, Sewa S (1999) Polymer electrolyte actuator with gold electrodes. In: Proceedings of the SPIE’s 6th annual international symposium on smart structures and materials, SPIE Proc, vol 3669, pp 64–71

    Google Scholar 

  4. Otero TF, Sansiñena JM (1998) Soft and wet conducting polymers for artificial muscles. Adv Mater 10(6):491–494

    Article  CAS  Google Scholar 

  5. Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244

    Article  CAS  Google Scholar 

  6. Kornbluh R, Pelrine R, Chiba S (2004) Silicon to silicon: stretching the capabilities of micromachines with electroactive polymers. IEEJ Trans Sens Micromech 124(8):266–271

    Article  Google Scholar 

  7. Chiba S, Waki M, Kormbluh R, Pelrine R (2008) Innovative power generators for energy harvesting using electroactive polymer artificial muscles. In: Bar-Cohen Y (ed) Electroactive polymer actuators and devices (EAPAD), Proceedings of the SPIE, vol 6927, pp 692–715, 1–9

    Google Scholar 

  8. Chiba S, Stanford S, Pelrine R, Kornbluh R, Prahlad H (2006) Electroactive polymer artificial muscle. JRSJ 24(4):38–42

    Article  Google Scholar 

  9. Pelrine R, Kornbluh R, Chiba S (2002) Artificial muscle for small robots and other micromechanical devices. IEEE Trans Jpn 122-E(2):97–101

    Google Scholar 

  10. Chiba S (2002) MEMS and NEMS applications of dielectric elastomer and future trends. Electr Pack Technol 18(1):32–38

    Google Scholar 

  11. Kornbluh R, Bashkin J, Pelrine R, Prahlad H, Chiba S (2004) Medical applications of new electroactive polymer artificial muscles. Seikei Kakou 16(10):631–637

    CAS  Google Scholar 

  12. Pei Q, Rosenthal M, Pelrine R, Stanford R, Kornbluh R (2003) Multifunctional electroekastomer roll actuators and their application for biomimetic walking robots. In: Bar-Cohen Y (ed) Proceedings of the SPIE, smart structures and materials, electroactive polymer actuators and devices (EAPAD), San Diego, March 2003

    Google Scholar 

  13. Chiba S, Waki M, Sawa T, Yoshida T, Kornbluh R, Pelrine R (2011) Electroactive polymer artificial muscle operable in ultra-high hydrostatics pressure environment. IEEE Sens J 11(1):3–4

    Article  Google Scholar 

  14. Ashida K, Ichiki M, Tanaka M, Kitahara T (2000) Power generation using Piezo element: energy conversion efficiency of Piezo element. In: Proceedings of the JAME annual meeting, pp 139–140

    Google Scholar 

  15. Jean-Mistral C, Basrour S, Chaillout J (2010) Comparison of electroactive polymer for energy scavenging applications. Smart Mater Struct 19:085012

    Article  Google Scholar 

  16. Chiba S, Waki M, Wada T, Hirakawa Y, Masuda K, Ikoma T (2013) Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators. Appl Energy 104:497–502

    Article  CAS  Google Scholar 

  17. Chiba S et al (2007) Extending applications of dielectric elastomer artificial muscle. In: Proceedings of the SPIE, San Diego, 18–22 March 2007

    Google Scholar 

  18. Chiba S, Pelrine R, Kornbluh R, Prahlad H, Stanford S, Eckerle J (2007) New opportunities in electric power generation using electroactive polymers (EPAM). J Jpn Inst Energy 86(9):743–747

    Article  CAS  Google Scholar 

  19. Chiba S, Kornbluh R, Pelrine R, Waki M (2008) Low-cost hydrogen production from electroactive polymer artificial muscle wave power generators. In: Proceedings of the world hydrogen energy conference, Brisbane, Australia, 16–20 June 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiki Chiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Chiba, S. (2014). Dielectric Elastomers. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54767-9_13

Download citation

Publish with us

Policies and ethics