Skip to main content

Making the Neural Plate to Fold into a Tube

  • Chapter
  • First Online:
New Principles in Developmental Processes

Abstract

Neural tube formation is a critical morphological process for neural development. Its defect causes serious birth defects such as anencephaly and spina bifida. Neural tube formation is initiated by the bending of the neural plate, which is regulated by multiple processes, including planar cell polarity (PCP) signaling, convergent extension, and apical constriction. However, how each event proceeds at the molecular level and how they are coordinated into a sequential movement have not been fully understood. We have explored the mechanisms of neural plate bending, focusing on the role of the remodeling of the adherens junctions (AJ) in neuroepithelial cells. At limited regions of the bending neural plate, neuroepithelial cells apically constrict because of the contraction of actomyosin filaments lining the AJ, which is induced by the recruitment of ROCK/Rho kinase to these sites, and this process is thought to produce a force to bend the plate. We found that this contraction is mediolaterally polarized, and this polarized bending is controlled by a cooperation of PCP signals and actomyosin contraction. Thus, we uncovered a mechanism by which the neural plate bends mediolaterally to form a tube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature (Lond) 429(6992):667–671

    Article  CAS  Google Scholar 

  • Blankenship JT, Backovic ST, Sanny JS et al (2006) Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev Cell 11(4):459–470

    Article  CAS  PubMed  Google Scholar 

  • Bosveld F, Bonnet I, Guirao B et al (2012) Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science 336(6082):724–727

    Article  CAS  PubMed  Google Scholar 

  • Brittle A, Thomas C, Strutt D (2012) Planar polarity specification through asymmetric subcellular localization of Fat and Dachsous. Curr Biol 22(10):907–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11(1):62–74

    Article  CAS  PubMed  Google Scholar 

  • Colas JF, Schoenwolf GC (2001) Towards a cellular and molecular understanding of neurulation. Dev Dyn 221(2):117–145

    Article  CAS  PubMed  Google Scholar 

  • Copp AJ, Greene ND (2010) Genetics and development of neural tube defects. J Pathol 220(2):217–230

    CAS  PubMed  Google Scholar 

  • Copp AJ, Greene ND, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4(10):784–793

    Article  PubMed  Google Scholar 

  • Curtin JA, Quint E, Tsipouri V et al (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13(13):1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Devenport D, Fuchs E (2008) Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nat Cell Biol 10(11):1257–1268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greene ND, Gerrelli D, Van Straaten HW et al (1998) Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects. Mech Dev 73(1):59–72

    Article  CAS  PubMed  Google Scholar 

  • Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107(7):843–854

    Article  CAS  PubMed  Google Scholar 

  • Hacker U, Perrimon N (1998) DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev 12(2):274–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haigo SL, Hildebrand JD, Harland RM et al (2003) Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr Biol 13(24):2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand JD (2005) Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J Cell Sci 118(Pt 22):5191–5203

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand JD, Soriano P (1999) Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99(5):485–497

    Article  CAS  PubMed  Google Scholar 

  • Jacobson AG, Gordon R (1976) Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. J Exp Zool 197(2):191–246

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Ito M, Amano M et al (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273(5272):245–248

    Article  CAS  PubMed  Google Scholar 

  • Kitzing TM, Sahadevan AS, Brandt DT et al (2007) Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev 21(12):1478–1483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li D, Hallett MA, Zhu W et al (2011) Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development (Camb) 138(2):303–315

    Article  CAS  Google Scholar 

  • Lienkamp SS, Liu K, Karner CM et al (2012) Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 44(12):1382–1387

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Sato A, Khadka D et al (2008) Mechanism of activation of the Formin protein Daam1. Proc Natl Acad Sci USA 105(1):210–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menzies AS, Aszodi A, Williams SE et al (2004) Mena and vasodilator-stimulated phosphoprotein are required for multiple actin-dependent processes that shape the vertebrate nervous system. J Neurosci 24(37):8029–8038

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Honda H, Takeichi M (2012) Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149(5):1084–1097

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Takeichi M (2008) Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development (Camb) 135(8):1493–1502

    Article  CAS  Google Scholar 

  • Nishimura T, Takeichi M (2009) Remodeling of the adherens junctions during morphogenesis. Curr Top Dev Biol 89:33–54

    Article  CAS  PubMed  Google Scholar 

  • Shimada Y, Yonemura S, Ohkura H et al (2006) Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev Cell 10(2):209–222

    Article  CAS  PubMed  Google Scholar 

  • Simoes Sde M, Blankenship JT, Weitz O et al (2010) Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev Cell 19(3):377–388

    Article  PubMed  Google Scholar 

  • Strutt H, Strutt D (2008) Differential stability of flamingo protein complexes underlies the establishment of planar polarity. Curr Biol 18(20):1555–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki M, Hara Y, Takagi C et al (2010) MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development (Camb) 137(14):2329–2339

    Article  CAS  Google Scholar 

  • Usui T, Shima Y, Shimada Y et al (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98(5):585–595

    Article  CAS  PubMed  Google Scholar 

  • Wallingford JB (2012) Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol 28:627–653

    Article  CAS  PubMed  Google Scholar 

  • Wallingford JB, Harland RM (2002) Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development (Camb) 129(24):5815–5825

    Article  CAS  Google Scholar 

  • Wallingford JB, Niswander LA, Shaw GM et al (2013) The continuing challenge of understanding, preventing, and treating neural tube defects. Science 339(6123):1222002

    Article  PubMed Central  PubMed  Google Scholar 

  • Warrington SJ, Strutt H, Strutt D (2013) The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2. Development (Camb) 140(5):1045–1054

    Article  CAS  Google Scholar 

  • Ybot-Gonzalez P, Cogram P, Gerrelli D et al (2002) Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development (Camb) 129(10):2507–2517

    CAS  Google Scholar 

  • Ybot-Gonzalez P, Gaston-Massuet C, Girdler G et al (2007) Neural plate morphogenesis during mouse neurulation is regulated by antagonism of BMP signalling. Development (Camb) 134(17):3203–3211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Masatoshi Takeichi for carefully reading this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamako Nishimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nishimura, T. (2014). Making the Neural Plate to Fold into a Tube. In: Kondoh, H., Kuroiwa, A. (eds) New Principles in Developmental Processes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54634-4_10

Download citation

Publish with us

Policies and ethics