Skip to main content

Abstract

Diseases or injuries in the central nervous system (CNS) often cause robust immune responses, which significantly affect the recovery process. Here we review recent knowledge about brain–immune system interactions, which occur during degenerative and reparative processes, and focus mainly on spinal cord injury (SCI). Immune system–brain inflammatory responses involve multiple cell types that originate in the bloodstream and reside in the brain. Studies indicate that these cells have bidirectional destructive and supportive effects on the repair of damaged neural tissue after SCI. These opposing roles likely depend on the types of cells and their state of activation. Further detailed investigations on the mechanisms and function of their interactions are required to ultimately reduce the toxicity and enhance the trophic effects of the immune system. This would lead to the development of novel strategies to enhance recovery after SCI. The recent discovery of neural circuits that directly regulate immune responses has further highlighted brain–immune system communication. In this regard, signals from the brain to the immune system should also be considered to understand the whole pathology of SCI. In this review, we aim to emphasize that cell–cell and system–system interactions are important concepts for understanding the complex reactions that occur in the degenerating CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Autonomic dysreflexia

CIDS:

CNS injury-induced immunodepression

CNS:

Central nervous system

HPA:

Hypothalamo-pituitary-adrenal

NE:

Norepinephrine

PVN:

Paraventricular nucleus

ROS:

Reactive oxygen species

SCI:

Spinal cord injury

SNS:

Sympathetic nervous system

TBI:

Traumatic brain injury

References

  • Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, Kohyama J, Namihira M, Komiya S, Nakashima K (2010) Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 120:3255–3266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    Article  CAS  PubMed  Google Scholar 

  • Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149

    Article  CAS  PubMed  Google Scholar 

  • Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG (2006) Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem 99:1073–1087

    Article  CAS  PubMed  Google Scholar 

  • Ankeny DP, Guan Z, Popovich PG (2009) B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. J Clin Invest 119:2990–2999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avellino AM, Hart D, Dailey AT, MacKinnon M, Ellegala D, Kliot M (1995) Differential macrophage responses in the peripheral and central nervous system during wallerian degeneration of axons. Exp Neurol 136:183–198

    Article  CAS  PubMed  Google Scholar 

  • Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 19:1708–1716

    CAS  PubMed  Google Scholar 

  • Blight AR (1985) Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Cent Nerv Syst Trauma 2:299–315

    CAS  PubMed  Google Scholar 

  • Blight AR (1994) Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage. Neuroscience 60:263–273

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  • Bouhy D, Malgrange B, Multon S, Poirrier AL, Scholtes F, Schoenen J, Franzen R (2006) Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J 20:1239–1241

    Article  CAS  PubMed  Google Scholar 

  • Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, Green EJ, Bethea JR (2005) Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med 202:145–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buller KM (2001) Role of circumventricular organs in pro-inflammatory cytokine-induced activation of the hypothalamic-pituitary-adrenal axis. Clin Exp Pharmacol Physiol 28:581–589

    Article  CAS  PubMed  Google Scholar 

  • Busch SA, Horn KP, Silver DJ, Silver J (2009) Overcoming macrophage-mediated axonal dieback following CNS injury. J Neurosci 29:9967–9976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cameron AA, Smith GM, Randall DC, Brown DR, Rabchevsky AG (2006) Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J Neurosci 26:2923–2932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campagnolo DI, Bartlett JA, Keller SE, Sanchez W, Oza R (1997) Impaired phagocytosis of Staphylococcus aureus in complete tetraplegics. Am J Phys Med Rehabil 76:276–280

    Article  CAS  PubMed  Google Scholar 

  • Campagnolo DI, Bartlett JA, Keller SE (2000) Influence of neurological level on immune function following spinal cord injury: a review. J Spinal Cord Med 23:121–128

    CAS  PubMed  Google Scholar 

  • Cano G, Sved AF, Rinaman L, Rabin BS, Card JP (2001) Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J Comp Neurol 439:1–18

    Article  CAS  PubMed  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    Article  CAS  PubMed  Google Scholar 

  • Chamak B, Morandi V, Mallat M (1994) Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin. J Neurosci Res 38:221–233

    Article  CAS  PubMed  Google Scholar 

  • Chamak B, Dobbertin A, Mallat M (1995) Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 69:177–187

    Article  CAS  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  • David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399

    Article  CAS  PubMed  Google Scholar 

  • Davies JE, Huang C, Proschel C, Noble M, Mayer-Proschel M, Davies SJ (2006) Astrocytes derived from glial-restricted precursors promote spinal cord repair. J Biol 5:7

    Article  PubMed Central  PubMed  Google Scholar 

  • de Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, De Koninck Y, Keane RW, Lacroix S (2012) P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci 32:3058–3066

    Article  PubMed  CAS  Google Scholar 

  • Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209:378–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16:2508–2521

    CAS  PubMed  Google Scholar 

  • Farooque M, Isaksson J, Olsson Y (1999) Improved recovery after spinal cord trauma in ICAM-1 and P-selectin knockout mice. Neuroreport 10:131–134

    Article  CAS  PubMed  Google Scholar 

  • Farooque M, Isaksson J, Olsson Y (2001) White matter preservation after spinal cord injury in ICAM-1/P-selectin-deficient mice. Acta Neuropathol 102:132–140

    CAS  PubMed  Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  CAS  PubMed  Google Scholar 

  • Fee D, Crumbaugh A, Jacques T, Herdrich B, Sewell D, Auerbach D, Piaskowski S, Hart MN, Sandor M, Fabry Z (2003) Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury. J Neuroimmunol 136:54–66

    Article  CAS  PubMed  Google Scholar 

  • Felten DL (2000) Neural influence on immune responses: underlying suppositions and basic principles of neural-immune signaling. Prog Brain Res 122:381–389

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AR, Christensen RN, Gensel JC, Miller BA, Sun F, Beattie EC, Bresnahan JC, Beattie MS (2008) Cell death after spinal cord injury is exacerbated by rapid TNF alpha-induced trafficking of GluR2-lacking AMPARs to the plasma membrane. J Neurosci 28:11391–11400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129:3249–3269

    Article  PubMed  Google Scholar 

  • Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18

    Article  CAS  PubMed  Google Scholar 

  • Garg SK, Banerjee R, Kipnis J (2008) Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol 180:3866–3873

    Article  CAS  PubMed  Google Scholar 

  • Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muia C, Esposito E, Bramanti P, Cuzzocrea S (2008) TNF-alpha blockage in a mouse model of SCI: evidence for improved outcome. Shock 29:32–41

    CAS  PubMed  Google Scholar 

  • Geoffroy CG, Zheng B (2014) Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 27C:31–38

    Article  CAS  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giuliani F, Goodyer CG, Antel JP, Yong VW (2003) Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol 171:368–379

    Article  CAS  PubMed  Google Scholar 

  • Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR (2000) Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci 85:49–59

    Article  CAS  PubMed  Google Scholar 

  • Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16:1618–1626

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez R, Glaser J, Liu MT, Lane TE, Keirstead HS (2003) Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury. Exp Neurol 184:456–463

    Article  CAS  PubMed  Google Scholar 

  • Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh AD, David S (2014) Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J Neurosci 34:6316–6322

    Article  CAS  PubMed  Google Scholar 

  • Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci 24:4043–4051

    Article  CAS  PubMed  Google Scholar 

  • Haddad JJ, Saade NE, Safieh-Garabedian B (2002) Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol 133:1–19

    Article  CAS  PubMed  Google Scholar 

  • Hagen EM, Lie SA, Rekand T, Gilhus NE, Gronning M (2010) Mortality after traumatic spinal cord injury: 50 years of follow-up. J Neurol Neurosurg Psychiatry 81:368–373

    Article  PubMed  Google Scholar 

  • Hamada Y, Ikata T, Katoh S, Nakauchi K, Niwa M, Kawai Y, Fukuzawa K (1996) Involvement of an intercellular adhesion molecule 1-dependent pathway in the pathogenesis of secondary changes after spinal cord injury in rats. J Neurochem 66:1525–1531

    Article  CAS  PubMed  Google Scholar 

  • Hauben E, Butovsky O, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Leibowitz-Amit R, Pevsner E, Akselrod S, Neeman M, Cohen IR, Schwartz M (2000) Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J Neurosci 20:6421–6430

    CAS  PubMed  Google Scholar 

  • Hauben E, Agranov E, Gothilf A, Nevo U, Cohen A, Smirnov I, Steinman L, Schwartz M (2001a) Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J Clin Invest 108:591–599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hauben E, Ibarra A, Mizrahi T, Barouch R, Agranov E, Schwartz M (2001b) Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc Natl Acad Sci U S A 98:15173–15178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayes KC, Hull TC, Delaney GA, Potter PJ, Sequeira KA, Campbell K, Popovich PG (2002) Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J Neurotrauma 19:753–761

    Article  CAS  PubMed  Google Scholar 

  • Herrmann JE, Shah RR, Chan AF, Zheng B (2010) EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury. Exp Neurol 223:582–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  CAS  PubMed  Google Scholar 

  • Hill RL, Zhang YP, Burke DA, Devries WH, Zhang Y, Magnuson DS, Whittemore SR, Shields CB (2009) Anatomical and functional outcomes following a precise, graded, dorsal laceration spinal cord injury in C57BL/6 mice. J Neurotrauma 26:1–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J (2008) Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 28:9330–9341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou S, Duale H, Cameron AA, Abshire SM, Lyttle TS, Rabchevsky AG (2008) Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection. J Comp Neurol 509:382–399

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang DW, McKerracher L, Braun PE, David S (1999) A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 24:639–647

    Article  CAS  PubMed  Google Scholar 

  • Inskip JA, Ramer LM, Ramer MS, Krassioukov AV (2009) Autonomic assessment of animals with spinal cord injury: tools, techniques and translation. Spinal Cord 47:2–35

    Article  CAS  PubMed  Google Scholar 

  • Ishii H, Kubo T, Kumanogoh A, Yamashita T (2010) Th1 cells promote neurite outgrowth from cortical neurons via a mechanism dependent on semaphorins. Biochem Biophys Res Commun 402:168–172

    Article  CAS  PubMed  Google Scholar 

  • Ishii H, Jin X, Ueno M, Tanabe S, Kubo T, Serada S, Naka T, Yamashita T (2012) Adoptive transfer of Th1-conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal cord injury. Cell Death Dis 3:e363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishii H, Tanabe S, Ueno M, Kubo T, Kayama H, Serada S, Fujimoto M, Takeda K, Naka T, Yamashita T (2013) ifn-gamma-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury. Cell Death Dis 4:e710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones TB, Basso DM, Sodhi A, Pan JZ, Hart RP, MacCallum RC, Lee S, Whitacre CC, Popovich PG (2002) Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 22:2690–2700

    CAS  PubMed  Google Scholar 

  • Jones TB, Ankeny DP, Guan Z, McGaughy V, Fisher LC, Basso DM, Popovich PG (2004) Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J Neurosci 24:3752–3761

    Article  CAS  PubMed  Google Scholar 

  • Jones TB, McDaniel EE, Popovich PG (2005) Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des 11:1223–1236

    Article  CAS  PubMed  Google Scholar 

  • Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  CAS  PubMed  Google Scholar 

  • Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kigerl KA, McGaughy VM, Popovich PG (2006) Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol 494:578–594

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitayama M, Ueno M, Itakura T, Yamashita T (2011) Activated microglia inhibit axonal growth through RGMa. PLoS One 6:e25234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubota K, Saiwai H, Kumamaru H, Maeda T, Ohkawa Y, Aratani Y, Nagano T, Iwamoto Y, Okada S (2012) Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury. Spine (Phila Pa 1976) 37:1363–1369

    Article  Google Scholar 

  • Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    Article  CAS  PubMed  Google Scholar 

  • Lazarov-Spiegler O, Solomon AS, Zeev-Brann AB, Hirschberg DL, Lavie V, Schwartz M (1996) Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J 10:1296–1302

    CAS  PubMed  Google Scholar 

  • Lee SM, Rosen S, Weinstein P, van Rooijen N, Noble-Haeusslein LJ (2011) Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury. J Neurotrauma 28:1893–1907

    Article  PubMed Central  PubMed  Google Scholar 

  • Liblau RS, Gonzalez-Dunia D, Wiendl H, Zipp F (2013) Neurons as targets for T cells in the nervous system. Trends Neurosci 36:315–324

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Tedeschi A, Park KK, He Z (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131–152

    Google Scholar 

  • Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Longbrake EE, Lai W, Ankeny DP, Popovich PG (2007) Characterization and modeling of monocyte-derived macrophages after spinal cord injury. J Neurochem 102:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Lotan M, Schwartz M (1994) Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. FASEB J 8:1026–1033

    CAS  PubMed  Google Scholar 

  • Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH (2012) Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150:1264–1273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luchetti S, Beck KD, Galvan MD, Silva R, Cummings BJ, Anderson AJ (2010) Comparison of immunopathology and locomotor recovery in C57BL/6, BUB/BnJ, and NOD-SCID mice after contusion spinal cord injury. J Neurotrauma 27:411–421

    Article  PubMed Central  PubMed  Google Scholar 

  • Lucin KM, Sanders VM, Jones TB, Malarkey WB, Popovich PG (2007) Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Exp Neurol 207:75–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lucin KM, Sanders VM, Popovich PG (2009) Stress hormones collaborate to induce lymphocyte apoptosis after high level spinal cord injury. J Neurochem 110:1409–1421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marcondes MC, Furtado GC, Wensky A, Curotto de Lafaille MA, Fox HS, Lafaille JJ (2005) Immune regulatory mechanisms influence early pathology in spinal cord injury and in spontaneous autoimmune encephalomyelitis. Am J Pathol 166:1749–1760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mawhinney LA, Thawer SG, Lu WY, Rooijen N, Weaver LC, Brown A, Dekaban GA (2012) Differential detection and distribution of microglial and hematogenous macrophage populations in the injured spinal cord of lys-EGFP-ki transgenic mice. J Neuropathol Exp Neurol 71:180–197

    Article  CAS  PubMed  Google Scholar 

  • Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6:775–786

    Article  CAS  PubMed  Google Scholar 

  • Mizrachi Y, Ohry A, Aviel A, Rozin R, Brooks ME, Schwartz M (1983) Systemic humoral factors participating in the course of spinal cord injury. Paraplegia 21:287–293

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Kohsaka S (2004) Microglia: neuroprotective and neurotrophic cells in the central nervous system. Curr Drug Targets Cardiovasc Haematol Disord 4:65–84

    Article  CAS  PubMed  Google Scholar 

  • Naruo S, Okajima K, Taoka Y, Uchiba M, Nakamura T, Okabe H, Takagi K (2003) Prostaglandin E1 reduces compression trauma-induced spinal cord injury in rats mainly by inhibiting neutrophil activation. J Neurotrauma 20:221–228

    Article  PubMed  Google Scholar 

  • Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, Perez-Pol R (2001) IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma 18:947–956

    Article  CAS  PubMed  Google Scholar 

  • Noble LJ, Wrathall JR (1989) Distribution and time course of protein extravasation in the rat spinal cord after contusive injury. Brain Res 482:57–66

    Article  CAS  PubMed  Google Scholar 

  • Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z (2002) Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 22:7526–7535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD (2006) Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 176:6523–6531

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    Article  CAS  PubMed  Google Scholar 

  • Oropallo MA, Held KS, Goenka R, Ahmad SA, O’Neill PJ, Steward O, Lane TE, Cancro MP (2012) Chronic spinal cord injury impairs primary antibody responses but spares existing humoral immunity in mice. J Immunol 188:5257–5266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL (2003) Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424:398–405

    Article  PubMed  CAS  Google Scholar 

  • Pineau I, Lacroix S (2007) Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 500:267–285

    Article  CAS  PubMed  Google Scholar 

  • Pineau I, Sun L, Bastien D, Lacroix S (2010) Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 24:540–553

    Article  CAS  PubMed  Google Scholar 

  • Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    Article  CAS  PubMed  Google Scholar 

  • Pool M, Rambaldi I, Darlington PJ, Wright MC, Fournier AE, Bar-Or A (2012) Neurite outgrowth is differentially impacted by distinct immune cell subsets. Mol Cell Neurosci 49:68–76

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Jones TB (2003) Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol Sci 24:13–17

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Longbrake EE (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9:481–493

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Horner PJ, Mullin BB, Stokes BT (1996a) A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp Neurol 142:258–275

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Stokes BT, Whitacre CC (1996b) Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J Neurosci Res 45:349–363

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377:443–464

    Article  CAS  PubMed  Google Scholar 

  • Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158:351–365

    Article  CAS  PubMed  Google Scholar 

  • Potas JR, Zheng Y, Moussa C, Venn M, Gorrie CA, Deng C, Waite PM (2006) Augmented locomotor recovery after spinal cord injury in the athymic nude rat. J Neurotrauma 23:660–673

    Article  PubMed  Google Scholar 

  • Pruss H, Kopp MA, Brommer B, Gatzemeier N, Laginha I, Dirnagl U, Schwab JM (2011) Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices and resolution plateau. Brain Pathol 21:652–660

    Article  PubMed  Google Scholar 

  • Quattrocchi KB, Issel BW, Miller CH, Frank EH, Wagner FC Jr (1992) Impairment of helper T-cell function following severe head injury. J Neurotrauma 9:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    Article  CAS  PubMed  Google Scholar 

  • Riegger T, Conrad S, Schluesener HJ, Kaps HP, Badke A, Baron C, Gerstein J, Dietz K, Abdizahdeh M, Schwab JM (2009) Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience 158:1194–1199

    Article  CAS  PubMed  Google Scholar 

  • Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, Rechavi G, Schwartz M (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5:e171

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA, Andersson U, Chavan S, Mak TW, Tracey KJ (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH (1999a) Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci 11:3648–3658

    Article  CAS  PubMed  Google Scholar 

  • Schnell L, Fearn S, Schwab ME, Perry VH, Anthony DC (1999b) Cytokine-induced acute inflammation in the brain and spinal cord. J Neuropathol Exp Neurol 58:245–254

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M, Raposo C (2014) Protective autoimmunity: a unifying model for the immune network involved in CNS repair. Neuroscientist 20:343–358

    Article  PubMed  CAS  Google Scholar 

  • Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X, Hart RP, Schwartz M (2005) Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 92:997–1009

    Article  CAS  PubMed  Google Scholar 

  • Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13:206–218

    Article  CAS  PubMed  Google Scholar 

  • Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15:946–950

    Article  CAS  PubMed  Google Scholar 

  • Shichita T, Sakaguchi R, Suzuki M, Yoshimura A (2012) Post-ischemic inflammation in the brain. Front Immunol 3:132

    Article  PubMed Central  PubMed  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  • Skoda D, Kranda K, Bojar M, Glosova L, Baurle J, Kenney J, Romportl D, Pelichovska M, Cvachovec K (2006) Antibody formation against beta-tubulin class III in response to brain trauma. Brain Res Bull 68:213–216

    Article  CAS  PubMed  Google Scholar 

  • Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, Krishnan V, Lai-Hsu C, Park KK, Tsoulfas P, Lee JK (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33:13882–13887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG (2003) Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol 462:223–240

    Article  PubMed  Google Scholar 

  • Stirling DP, Yong VW (2008) Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. J Neurosci Res 86:1944–1958

    Article  CAS  PubMed  Google Scholar 

  • Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190

    Article  CAS  PubMed  Google Scholar 

  • Stirling DP, Liu S, Kubes P, Yong VW (2009) Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J Neurosci 29:753–764

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Niu W, Liu ML, Zou Y, Zhang CL (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:3338

    PubMed Central  PubMed  Google Scholar 

  • Takamatsu H, Kumanogoh A (2012) Diverse roles for semaphorin-plexin signaling in the immune system. Trends Immunol 33:127–135

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Ueno M, Yamashita T (2009) Engulfment of axon debris by microglia requires p38 MAPK activity. J Biol Chem 284:21626–21636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taoka Y, Okajima K, Uchiba M, Murakami K, Harada N, Johno M, Naruo M, Okabe H, Takatsuki K (1997a) Reduction of spinal cord injury by administration of iloprost, a stable prostacyclin analog. J Neurosurg 86:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K (1997b) Role of neutrophils in spinal cord injury in the rat. Neuroscience 79:1177–1182

    Article  CAS  PubMed  Google Scholar 

  • Taoka Y, Okajima K, Murakami K, Johno M, Naruo M (1998) Role of neutrophil elastase in compression-induced spinal cord injury in rats. Brain Res 799:264–269

    Article  CAS  PubMed  Google Scholar 

  • Thawer SG, Mawhinney L, Chadwick K, de Chickera SN, Weaver LC, Brown A, Dekaban GA (2013) Temporal changes in monocyte and macrophage subsets and microglial macrophages following spinal cord injury in the Lys-Egfp-ki mouse model. J Neuroimmunol 261:7–20

    Article  CAS  PubMed  Google Scholar 

  • Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9:418–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uccelli A, Pistoia V, Moretta L (2007) Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 28:219–226

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Yamashita T (2014) Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation. Curr Opin Neurobiol 27C:8–15

    Article  CAS  Google Scholar 

  • Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551

    Article  CAS  PubMed  Google Scholar 

  • Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wehrle R, Camand E, Chedotal A, Sotelo C, Dusart I (2005) Expression of netrin-1, slit-1 and slit-3 but not of slit-2 after cerebellar and spinal cord lesions. Eur J Neurosci 22:2134–2144

    Article  PubMed  Google Scholar 

  • Whetstone WD, Hsu JY, Eisenberg M, Werb Z, Noble-Haeusslein LJ (2003) Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res 74:227–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White RE, Rao M, Gensel JC, McTigue DM, Kaspar BK, Jakeman LB (2011) Transforming growth factor alpha transforms astrocytes to a growth-supportive phenotype after spinal cord injury. J Neurosci 31:15173–15187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright HL, Moots RJ, Bucknall RC, Edwards SW (2010) Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford) 49:1618–1631

    Article  CAS  Google Scholar 

  • Wu B, Matic D, Djogo N, Szpotowicz E, Schachner M, Jakovcevski I (2012) Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes. Exp Neurol 237:274–285

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Guan Z, Reader B, Shawler T, Mandrekar-Colucci S, Huang K, Weil Z, Bratasz A, Wells J, Powell ND, Sheridan JF, Whitacre CC, Rabchevsky AG, Nash MS, Popovich PG (2013) Autonomic dysreflexia causes chronic immune suppression after spinal cord injury. J Neurosci 33:12970–12981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zukor K, Belin S, Wang C, Keelan N, Wang X, He Z (2013) Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J Neurosci 33:15350–15361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work undertaken in the Yamashita lab was supported by a grant for Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency (JST) and a Grant-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Sciences (JSPS 25221309). M.U. was supported by a Postdoctoral Fellowship for Research Abroad from the JSPS and by the Precursory Research for Embryonic Science and Technology (PRESTO) program from the JST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masaki Ueno or Toshihide Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ueno, M., Yamashita, T. (2015). The Brain–Immune Network in Spinal Cord Injury. In: Wada, K. (eds) Neurodegenerative Disorders as Systemic Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54541-5_3

Download citation

Publish with us

Policies and ethics