Skip to main content

Synapse Formation in the Brain

  • Chapter
  • First Online:
Cortical Development

Abstract

Precise synaptic connections between nerve cells in the brain provide the basis of perception, learning, memory, and cognition. Synapse formation is the key step in the development of neuronal networks and requires the coordinate assembly of large numbers of protein complexes. Trans-synaptic cell adhesion molecules are thought to mediate target recognition and induction of pre- and postsynaptic specializations. Despite the wealth of information on the molecular mechanisms of glutamatergic synaptogenesis proposed by in vitro studies using neuronal cell culture models, evidence for their relevance to synaptogenesis in vivo has been lacking. Thus, fundamental questions about how glutamatergic synapses are formed in the mammalian brain have remained unanswered. On the other hand, there is clear in vivo evidence that GluRδ2, a member of the δ-type glutamate receptor (GluR), plays an essential role in cerebellar Purkinje cell (PC) synapse formation. We found that a significant number of PC spines lack synaptic contacts with parallel fiber (PF) terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Recently, we have shown that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through Cbln1 mediates PF-PC synapse formation. The assembly stoichiometry of the synaptogenic GluRδ2-Cbln1-NRXN1β triad provides the molecular insight into the mechanism of PF-PC synapse formation in the cerebellum. IL1-receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic mental retardation and autism. We have found that postsynaptic IL1RAPL1 mediates excitatory synapse formation of cortical neurons through trans-synaptic interaction with specific variants of presynaptic protein tyrosine phosphatase-δ. These results imply the impaired synapse formation as a common pathogenic pathway shared by mental retardation and autism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355

    Article  PubMed  CAS  Google Scholar 

  • Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel δ2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197:1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406

    Article  PubMed  CAS  Google Scholar 

  • Bao D, Pang Z, Morgan JI (2005) The structure and proteolytic processing of Cbln1 complexes. J Neurochem 95:618–629

    Article  PubMed  CAS  Google Scholar 

  • Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, Endris V, Roberts W, Szatmari P, Pinto D, Bonin M, Riess A, Engels H, Sprengel R, Scherer SW, Rappold GA (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42:489–491

    Article  PubMed  CAS  Google Scholar 

  • Biederer T, Südhof TC (2000) Mints as adaptors: direct binding to neurexins and recruitment of Munc18. J Biol Chem 275:39803–39806

    Article  PubMed  CAS  Google Scholar 

  • Biederer T, Südhof TC (2001) CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem 276:47869–47876

    PubMed  CAS  Google Scholar 

  • Bill BR, Geschwind DH (2009) Genetic advances in autism: heterogeneity and convergence on shared pathways. Curr Opin Genet Dev 19:271–278

    Article  PubMed  CAS  Google Scholar 

  • Born TL, Smith DE, Garka KE, Renshaw BR, Bertles JS, Sims JE (2000) Identification and characterization of two members of a novel class of the interleukin-1 receptor (IL-1R) family. Delineation of a new class of IL-1R-related proteins based on signaling. J Biol Chem 275:29946–29954

    Article  PubMed  CAS  Google Scholar 

  • Bourgeron T (2009) A synaptic trek to autism. Curr Opin Neurobiol 19:231–234

    Article  PubMed  CAS  Google Scholar 

  • Butz S, Okamoto M, Südhof TC (1998) A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94:773–782

    Article  PubMed  CAS  Google Scholar 

  • Carrié A, Jun L, Bienvenu T et al (1999) A new member of the IL-1 receptor family highly expressed in hippocampus and involved in X-linked mental retardation. Nat Genet 23:25–31

    PubMed  Google Scholar 

  • Chelly J, Mandel JL (2001) Monogenic causes of X-linked mental retardation. Nat Rev Genet 2:669–680

    Article  PubMed  CAS  Google Scholar 

  • Chelly J, Khelfaoui M, Francis F, Chérif B, Bienvenu T (2006) Genetics and pathophysiology of mental retardation. Eur J Hum Genet 14:701–713

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Yoshida T, Sagara H, Mikami Y, Mishina M (2011) Protein tyrosine phosphatase σ regulates the synapse number of zebrafish olfactory sensory neurons. J Neurochem 119:532–543

    Article  PubMed  CAS  Google Scholar 

  • Chiurazzi P, Schwartz CE, Gecz J, Neri G (2008) XLMR genes: update 2007. Eur J Hum Genet 16:422–434

    Article  PubMed  CAS  Google Scholar 

  • Dalva MB, McClelland AC, Kayser MS (2007) Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8:206–220

    Article  PubMed  CAS  Google Scholar 

  • de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN, Yates JR 3rd, Comoletti D, Taylor P, Ghosh A (2009) LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64:799–806

    Article  PubMed  Google Scholar 

  • Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003) Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 6:708–716

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  PubMed  CAS  Google Scholar 

  • Durand CM, Betancur C, Boeckers TM et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27

    Article  PubMed  CAS  Google Scholar 

  • Dynes JL, Ngai J (1998) Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos. Neuron 20:1081–1091

    Article  PubMed  CAS  Google Scholar 

  • Fombonne E (1999) The epidemiology of autism: a review. Psychol Med 29:769–786

    Article  PubMed  CAS  Google Scholar 

  • Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D (2011) Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70:898–907

    Article  PubMed  CAS  Google Scholar 

  • Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026

    Article  PubMed  CAS  Google Scholar 

  • Greenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA, Ju G (1995) Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J Biol Chem 270:13757–13765

    Article  PubMed  CAS  Google Scholar 

  • Grootjans JJ, Reekmans G, Ceulemans H, David G (2000) Syntenin-syndecan binding requires syndecan-synteny and the co-operation of both PDZ domains of syntenin. J Biol Chem 275:19933–19941

    Article  PubMed  CAS  Google Scholar 

  • Hata Y, Davletov B, Petrenko AG, Jahn R, Südhof TC (1993) Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron 10:307–315

    Article  PubMed  CAS  Google Scholar 

  • Hata Y, Butz S, Südhof TC (1996) CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci 16:2488–2494

    PubMed  CAS  Google Scholar 

  • Hirai H, Pang Z, Bao D, Miyazaki T, Li L, Miura E, Parris J, Rong Y, Watanabe M, Yuzaki M, Morgan JI (2005) Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci 8:1534–1541

    Article  PubMed  CAS  Google Scholar 

  • Jamain S, Betancur C, Quach H, Philippe A, Fellous M, Giros B, Gillberg C, Leboyer M, Bourgeron T, Paris Autism Research International Sibpair (PARIS) Study (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29

    Article  PubMed  CAS  Google Scholar 

  • Joo JY, Lee SJ, Uemura T, Yoshida T, Yasumura M, Watanabe M, Mishina M (2011) Differential interactions of cerebellin precursor protein (Cbln) subtypes and neurexin variants for synapse formation of cortical neurons. Biochem Biophys Res Commun 406:627–632

    Article  PubMed  CAS  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y, Aizawa S, Mishina M (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluRδ2 mutant mice. Cell 81:245–252

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781

    Article  PubMed  CAS  Google Scholar 

  • Kim HG, Kishikawa S, Higgins AW et al (2008) Disruption of neurexin1 associated with autism spectrum disorder. Am J Hum Genet 82:199–207

    Article  PubMed  CAS  Google Scholar 

  • Ko J, Fuccillo MV, Malenka RC, Südhof TC (2009) LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64:791–798

    Article  PubMed  CAS  Google Scholar 

  • Kurihara H, Hashimoto K, Kano M, Takayama C, Sakimura K, Mishina M, Inoue Y, Watanabe M (1997) Impaired parallel fiber-Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor δ2 subunit. J Neurosci 17:9613–9623

    PubMed  CAS  Google Scholar 

  • Kwon SK, Woo J, Kim SY, Kim H, Kim E (2010) Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase δ (PTPδ), and PTPσ via specific domains regulate excitatory synapse formation. J Biol Chem 285:13966–13978

    Article  PubMed  CAS  Google Scholar 

  • Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen OP (1997) Differential localization of δ glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17:834–842

    PubMed  CAS  Google Scholar 

  • Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P, Laudier B, Chelly J, Fryns JP, Ropers HH, Hamel BC, Andres C, Barthélémy C, Moraine C, Briault S (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74:552–557

    Article  PubMed  CAS  Google Scholar 

  • Laumonnier F, Shoubridge C, Antar C, Nguyen LS, Van Esch H, Kleefstra T, Briault S, Fryns JP, Hamel B, Chelly J, Ropers HH, Ronce N, Blesson S, Moraine C, Gécz J, Raynaud M (2010) Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Mol Psychiatry 15:767–776

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Uemura T, Yoshida T, Mishina M (2012) GluRδ2 assembles four neurexins into trans-synaptic triad to trigger synapse formation. J Neurosci 32:4688–4701

    Article  PubMed  CAS  Google Scholar 

  • Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374:1627–1638

    Article  PubMed  Google Scholar 

  • Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J, Marks S, Lakshmi B, Pai D, Ye K, Buja A, Krieger A, Yoon S, Troge J, Rodgers L, Iossifov I, Wigler M (2011) Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70:886–897

    Article  PubMed  CAS  Google Scholar 

  • Li J, Mack JA, Souren M, Yaksi E, Higashijima S, Mione M, Fetcho JR, Friedrich RW (2005) Early development of functional spatial maps in the zebrafish olfactory bulb. J Neurosci 25:5784–5795

    Article  PubMed  CAS  Google Scholar 

  • Lomeli H, Sprengel R, Laurie DJ, Köhr G, Herb A, Seeburg PH, Wisden W (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315:318–322

    Article  PubMed  CAS  Google Scholar 

  • Lu HL, Yang CY, Chen HC, Hung CS, Chiang YC, Ting LP (2008) A novel alternatively spliced interleukin-1 receptor accessory protein mIL-1RAcP687. Mol Immunol 45:1374–1384

    Article  PubMed  CAS  Google Scholar 

  • Marxen M, Volknandt W, Zimmermann H (1999) Endocytic vacuoles formed following a short pulse of K+-stimulation contain a plethora of presynaptic membrane proteins. Neuroscience 94:985–996

    Article  PubMed  CAS  Google Scholar 

  • Maximov A, Südhof TC, Bezprozvannv I (1999) Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem 274:24453–24456

    Article  PubMed  CAS  Google Scholar 

  • McAllister AK (2007) Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 30:425–450

    Article  PubMed  CAS  Google Scholar 

  • Mishina M, Uemura T, Yasumura M, Yoshida T (2012) Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Front Neural Circuits 6:90

    Article  PubMed  CAS  Google Scholar 

  • Mons N, Guillou JL, Jaffard R (1999) The role of Ca2+/calmodulin-stimulable adenylyl cyclases as molecular coincidence detectors in memory formation. Cell Mol Life Sci 55:525–533

    Article  PubMed  CAS  Google Scholar 

  • Palmer G, Lipsky BP, Smithgall MD, Meininger D, Siu S, Talabot-Ayer D, Gabay C, Smith DE (2008) The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine 42:358–364

    Article  PubMed  CAS  Google Scholar 

  • Pavlowsky A, Gianfelice A, Pallotto M, Zanchi A, Vara H, Khelfaoui M, Valnegri P, Rezai X, Bassani S, Brambilla D, Kumpost J, Blahos J, Roux MJ, Humeau Y, Chelly J, Passafaro M, Giustetto M, Billuart P, Sala C (2010) A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation. Curr Biol 20:103–115

    Article  PubMed  CAS  Google Scholar 

  • Pinto D, Pagnamenta AT, Klei L et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466:368–372

    Article  PubMed  CAS  Google Scholar 

  • Piton A, Michaud JL, Peng H, Aradhya S, Gauthier J, Mottron L, Champagne N, Lafrenière RG, Hamdan FF, S2D team, Joober R, Fombonne E, Marineau C, Cossette P, Dubé MP, Haghighi P, Drapeau P, Barker PA, Carbonetto S, Rouleau GA (2008) Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Hum Mol Genet 17:3965–3974

    Article  PubMed  CAS  Google Scholar 

  • Ropers HH (2006) X-linked mental retardation: many genes for a complex disorder. Curr Opin Genet Dev 16:260–269

    Article  PubMed  CAS  Google Scholar 

  • Sala C, Piëch V, Wilson NR, Passafaro M, Liu G, Sheng M (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31:115–130

    Article  PubMed  CAS  Google Scholar 

  • Sanders SJ, Ercan-Sencicek AG, Hus V et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70:863–885

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele P (2003) Cell-cell signaling during synapse formation in the CNS. Annu Rev Neurosci 26:485–508

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669

    Article  PubMed  CAS  Google Scholar 

  • Shen K, Scheiffele P (2010) Genetics and cell biology of building specific synaptic connectivity. Annu Rev Neurosci 33:473–507

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Kim E (2000) The Shank family of scaffold proteins. J Cell Sci 113:1851–1856

    PubMed  CAS  Google Scholar 

  • Siddiqui TJ, Craig AM (2011) Synaptic organizing complexes. Curr Opin Neurobiol 21:132–143

    Article  PubMed  CAS  Google Scholar 

  • Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89–102

    Article  PubMed  CAS  Google Scholar 

  • Smith DE, Lipsky BP, Russell C, Ketchem RR, Kirchner J, Hensley K, Huang Y, Friedman WJ, Boissonneault V, Plante MM, Rivest S, Sims JE (2009) A central nervous system-restricted isoform of the interleukin-1 receptor accessory protein modulates neuronal responses to interleukin-1. Immunity 30:817–831

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911

    Article  PubMed  Google Scholar 

  • Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, Craig AM (2011) Postsynaptic TrkC and presynaptic PTPσ function as a bidirectional excitatory synaptic organizing complex. Neuron 69:287–303

    Article  PubMed  CAS  Google Scholar 

  • Takayama C, Nakagawa S, Watanabe M, Mishina M, Inoue Y (1996) Developmental changes in expression and distribution of the glutamate receptor channel δ2 subunit according to the Purkinje cell maturation. Brain Res Dev Brain Res 92:147–155

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Miyazaki T, Watanabe M, Mori H, Sakimura K, Mishina M (2005) Control of synaptic connection by glutamate receptor δ2 in the adult cerebellum. J Neurosci 25:2146–2156

    Article  PubMed  CAS  Google Scholar 

  • Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Mishina M (2008) The amino-terminal domain of glutamate receptor δ2 triggers presynaptic differentiation. Biochem Biophys Res Commun 377:1315–1319

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Kakizawa S, Yamasaki M, Sakimura K, Watanabe M, Iino M, Mishina M (2007) Regulation of long-term depression and climbing fiber territory by glutamate receptor δ2 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells. J Neurosci 27:12096–12108

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M (2010) Trans-synaptic interaction of GluRδ2 and neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141:1068–1079

    Article  PubMed  CAS  Google Scholar 

  • Urakubo T, Tominaga-Yoshino K, Ogura A (2003) Non-synaptic exocytosis enhanced in rat cerebellar granule neurons cultured under survival-promoting conditions. Neurosci Res 45:429–436

    Article  PubMed  Google Scholar 

  • Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang W, Südhof TC, Brose N (2006) Neuroligins determine synapse maturation and function. Neuron 51:741–754

    Article  PubMed  CAS  Google Scholar 

  • Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380–384

    Article  PubMed  CAS  Google Scholar 

  • Waites CL, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274

    Article  PubMed  CAS  Google Scholar 

  • Williams ME, de Wit J, Ghosh A (2010) Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 68:9–18

    Article  PubMed  CAS  Google Scholar 

  • Wilson SW, Ross LS, Parrett T, Easter SSJ (1990) The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. Development 108:121–145

    PubMed  CAS  Google Scholar 

  • Woo J, Kwon SK, Choi S, Kim S, Lee JR, Dunah AW, Sheng M, Kim E (2009) Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci 12:428–437

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Storm DR (1997) Calmodulin-regulated adenylyl cyclases and neuromodulation. Curr Opin Neurobiol 7:391–396

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Mishina M (2005) Distinct roles of calcineurin-nuclear factor of activated T-cells and protein kinase A-cAMP response element-binding protein signaling in presynaptic differentiation. J Neurosci 25:3067–3079

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Mishina M (2008) Zebrafish orthologue of mental retardation protein IL1RAPL1 regulates presynaptic differentiation. Mol Cell Neurosci 39:218–228

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Ito A, Matsuda N, Mishina M (2002) Regulation by protein kinase A switching of axonal pathfinding of zebrafish olfactory sensory neurons through the olfactory placode-olfactory bulb boundary. J Neurosci 22:4964–4972

    PubMed  CAS  Google Scholar 

  • Yoshida T, Uchida S, Mishina M (2009) Regulation of synaptic vesicle accumulation and axon terminal remodeling during synapse formation by distinct Ca2+ signaling. J Neurochem 111:160–170

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Yasumura M, Uemura T, Lee SJ, Ra M, Taguchi R, Iwakura Y, Mishina M (2011) IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ. J Neurosci 31:13485–13499

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Shiroshima T, Lee SJ, Yasumura M, Uemura T, Chen X, Iwakura T, Mishina M (2012) Neuronal isoform of an essential subunit of receptors for interleukin-1 family cytokines organizes synaptogenesis in the brain. J Neurosci 32:2588–2600

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Ms. Ryoko Suzuki for help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Mishina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Mishina, M., Yoshida, T., Yasumura, M., Uemura, T. (2013). Synapse Formation in the Brain. In: Kageyama, R., Yamamori, T. (eds) Cortical Development. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54496-8_11

Download citation

Publish with us

Policies and ethics