Skip to main content

TGF-β as Tumor Suppressor: Lessons from Mouse Models

  • Chapter
  • First Online:
TGF-β in Human Disease

Abstract

Transforming growth factor-β (TGF-β) signals through serine/threonine-kinase receptors to activate several intracellular signaling pathways, including the “canonical” Smad signaling pathway. TGF-β has tumor-suppressive functions through its capacity to induce growth arrest and apoptosis. Escape from the anti-proliferative effects of TGF-β is a hallmark of almost all tumors of epithelial origin. This chapter first depicts the genetic alterations ablating the TGF-β tumor-suppressive functions in human tumors. Then, the chapter presents the genetically engineered mouse models that have been developed by introducing genetic alterations found in humans. These mouse models demonstrated the tumor-suppressive role of TGF-β in vivo shedding light on its intricate relationship with the tumor microenvironment. In all, the presented mouse models of cancer with an impaired TGF-β signaling pathway provide an integrated view of the complex tumor-suppressive role of TGF-β and represent valuable tools for preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALK5:

Activin receptor-like kinase 5

AOM:

Azoxymethane

APC:

Adenomatous polyposis coli

BMP:

Bone morphogenetic protein

BMPR1A:

Bone morphogenetic protein receptor, type IA

CTGF:

Connective tissue growth factor

DEN:

Diethylnitrosamine

DMBA:

7,12-Dimethylbenz(α)anthracene

DPC4:

Deleted in pancreatic carcinoma 4

ELF:

Embryonic liver fodrin

EMT:

Epithelial-to-mesenchymal transition

FAP:

Familial adenomatous polyposis

HoCC:

Homotypic cell cannibalism

IPMN:

Intraductal papillary mucinous neoplasms

KSSTT:

Pdx1-Cre; KRASG12D; Smad4-KOL/L; TIF1γ-KOL/L

LOH:

Loss of heterozygosity

LRP:

Low-density lipoprotein receptor-related protein

LSL:

Lox-stop-lox

MAPK:

Mitogen-activated protein kinase

MCN:

Mucinous cystic neoplasms

Min:

Multiple intestinal neoplasia

MMP:

Matrix metalloproteinase

MMTV:

Mouse mammary tumor virus

MSI:

Microsatellite instability

PanIN:

Pancreatic intraepithelial neoplasms

PDAC:

Pancreatic ductal adenocarcinoma

PDGF:

Platelet-derived growth factor

PyVmT:

Polyoma virus middle T antigen

SCC:

Squamous cell carcinoma

TGF-β:

Transforming growth factor β

TGF-α:

Transforming growth factor α

TIF1:

Transcriptional intermediary factor 1

TPA:

12-O-tetradecanoylphorbol-13-acetate

TβRI:

TGF-β type I receptor

TβRII:

TGF-β type II receptor

WAP:

Whey acidic protein

References

  • Agricola E, Randall RA, Gaarenstroom T, Dupont S, Hill CS (2011) Recruitment of TIF1γ to chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. Mol Cell 43:85–96

    PubMed  CAS  Google Scholar 

  • Aguirre AJ (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126

    PubMed  CAS  Google Scholar 

  • Alberici P, Jagmohan-Changur S, De Pater E, Van Der Valk M, Smits R, Hohenstein P, Fodde R (2006) Smad4 haploinsufficiency in mouse models for intestinal cancer. Oncogene 25:1841–1851

    PubMed  CAS  Google Scholar 

  • Amendt C, Schirmacher P, Weber H, Blessing M (1998) Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 17:25–34

    PubMed  CAS  Google Scholar 

  • Amendt C, Mann A, Schirmacher P, Blessing M (2002) Resistance of keratinocytes to TGF-β-mediated growth restriction and apoptosis induction accelerates re-epithelialization in skin wounds. J Cell Sci 115:2189–2198

    PubMed  CAS  Google Scholar 

  • Aretz S, Stienen D, Uhlhaas S, Stolte M, Entius MM, Loff S, Back W, Kaufmann A, Keller KM, Blaas SH, Siebert R, Vogt S, Spranger S, Holinski-Feder E, Sunde L, Propping P, Friedl W (2007) High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome. J Med Genet 44:702–709

    PubMed  CAS  Google Scholar 

  • Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1:260–266

    PubMed  CAS  Google Scholar 

  • Bai X, Kim J, Yang Z, Jurynec MJ, Akie TE, Lee J, LeBlanc J, Sessa A, Jiang H, DiBiase A, Zhou Y, Grunwald DJ, Lin S, Cantor AB, Orkin SH, Zon LI (2010) TIF1γ controls erythroid cell fate by regulating transcription elongation. Cell 142:133–143

    PubMed  CAS  Google Scholar 

  • Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D, DePinho RA (2006) Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 20:3130–3146

    PubMed  CAS  Google Scholar 

  • Bartholin L (2012) Pancreatic Cancer and the Tumor Microenvironment: Mesenchyme’s role in Pancreatic Carcinogenesis. In: PJ Grippo, HG Munshi (Eds.), Pancreatic Cancer and Tumor Microenvironment. Trivandrum (India): Transworld Research Network; p 55–94.

    Google Scholar 

  • Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    PubMed  CAS  Google Scholar 

  • Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, Chen W, Flanders KC, Gutkind JS, Wakefield LM, Kulkarni AB (2009) Progressive tumor formation in mice with conditional deletion of TGF-β signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res 69:5918–5926

    PubMed  CAS  Google Scholar 

  • Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M, Forrester E, Yang L, Wagner KU, Moses HL (2008) Transforming growth factor-β regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res 68:1809–1819

    PubMed  CAS  Google Scholar 

  • Bierie B, Gorska AE, Stover DG, Moses HL (2009) TGF-β promotes cell death and suppresses lactation during the second stage of mammary involution. J Cell Physiol 219:57–68

    PubMed  CAS  Google Scholar 

  • Biswas S, Chytil A, Washington K, Romero-Gallo J, Gorska AE, Wirth PS, Gautam S, Moses HL, Grady WM (2004) Transforming growth factor-β receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res 64:4687–4692

    PubMed  CAS  Google Scholar 

  • Biswas S, Trobridge P, Romero-Gallo J, Billheimer D, Myeroff LL, Willson JK, Markowitz SD, Grady WM (2008) Mutational inactivation of TGF-βR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor-β resistant cells. Genes Chromosomes Cancer 47:95–106

    PubMed  CAS  Google Scholar 

  • Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ (2009) Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 119:3408–3419

    PubMed  CAS  Google Scholar 

  • Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM (1997a) Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor-β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12- dimethylbenz-[a]-anthracene. Cancer Res 57:5564–5570

    PubMed  CAS  Google Scholar 

  • Bottinger EP, Jakubczak JL, Roberts IS, Mumy M, Hemmati P, Bagnall K, Merlino G, Wakefield LM (1997b) Expression of a dominant-negative mutant TGF-β type II receptor in transgenic mice reveals essential roles for TGF-β in regulation of growth and differentiation in the exocrine pancreas. EMBO J 16:2621–2633

    PubMed  CAS  Google Scholar 

  • Boulanger CA, Smith GH (2001) Reducing mammary cancer risk through premature stem cell senescence. Oncogene 20:2264–2272

    PubMed  CAS  Google Scholar 

  • Boulanger CA, Wagner KU, Smith GH (2005) Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene 24:552–560

    PubMed  CAS  Google Scholar 

  • Buess M, Terracciano L, Reuter J, Ballabeni P, Boulay JL, Laffer U, Metzger U, Herrmann R, Rochlitz C (2004) Amplification of SKI is a prognostic marker in early colorectal cancer. Neoplasia 6:207–212

    PubMed  CAS  Google Scholar 

  • Buggiano V, Schere-Levy C, Abe K, Vanzulli S, Piazzon I, Smith GH, Kordon EC (2001) Impairment of mammary lobular development induced by expression of TGF-β1 under the control of WAP promoter does not suppress tumorigenesis in MMTV-infected transgenic mice. Int J Cancer 92:568–576

    PubMed  CAS  Google Scholar 

  • Callahan R, Smith GH (2000) MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 19:992–1001

    PubMed  CAS  Google Scholar 

  • Network CGA (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Google Scholar 

  • Cano CE, Sandi MJ, Hamidi T, Calvo EL, Turrini O, Bartholin L, Loncle C, Secq V, Garcia S, Lomberk G, Kroemer G, Urrutia R, Iovanna JL (2012) Homotypic cell cannibalism, a cell-death process regulated by the nuclear protein 1, opposes to metastasis in pancreatic cancer. EMBO Mol Med 4(9):964–979

    PubMed  CAS  Google Scholar 

  • Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL (2005) Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene 24:5053–5068

    PubMed  CAS  Google Scholar 

  • Cui W, Fowlis DJ, Cousins FM, Duffie E, Bryson S, Balmain A, Akhurst RJ (1995) Concerted action of TGF-β1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev 9:945–955

    PubMed  CAS  Google Scholar 

  • Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, Akhurst RJ (1996) TGF-β1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542

    PubMed  CAS  Google Scholar 

  • Descargues P, Sil AK, Sano Y, Korchynskyi O, Han G, Owens P, Wang XJ, Karin M (2008) IKKα is a critical coregulator of a Smad4-independent TGF-β Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc Natl Acad Sci USA 105:2487–2492

    PubMed  CAS  Google Scholar 

  • Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice. Development 121:1845–1854

    PubMed  CAS  Google Scholar 

  • Doisne JM, Bartholin L, Yan KP, Garcia CN, Duarte N, Le Luduec JB, Vincent D, Cyprian F, Horvat B, Martel S, Rimokh R, Losson R, Benlagha K, Marie JC (2009) iNKT cell development is orchestrated by different branches of TGF-β signaling. J Exp Med 206:1365–1378

    PubMed  CAS  Google Scholar 

  • Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, Piccolo S (2005) Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121:87–99

    PubMed  CAS  Google Scholar 

  • Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGF-β signaling, controls Smad4 monoubiquitination. Cell 136:123–135

    PubMed  CAS  Google Scholar 

  • Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS, Doetschman T (1999) Transforming growth factor-β1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 59:3379–3386

    PubMed  CAS  Google Scholar 

  • Engle SJ, Ormsby I, Pawlowski S, Boivin GP, Croft J, Balish E, Doetschman T (2002) Elimination of colon cancer in germ-free transforming growth factor-β1-deficient mice. Cancer Res 62:6362–6366

    PubMed  CAS  Google Scholar 

  • Fang WB, Jokar I, Chytil A, Moses HL, Abel T, Cheng N (2011) Loss of one TGF-βR2 allele in fibroblasts promotes metastasis in MMTV: polyoma middle T transgenic and transplant mouse models of mammary tumor progression. Clin Exp Metastasis 28:351–366

    PubMed  CAS  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    PubMed  CAS  Google Scholar 

  • Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR, Muller WJ, Moses HL (2005) Effect of conditional knockout of the type II TGF-β eceptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 65:2296–2302

    PubMed  CAS  Google Scholar 

  • Fowlis DJ, Cui W, Johnson SA, Balmain A, Akhurst RJ (1996) Altered epidermal cell growth control in vivo by inducible expression of transforming growth factor-β1 in the skin of transgenic mice. Cell Growth Differ 7:679–687

    PubMed  CAS  Google Scholar 

  • Freeman TJ, Smith JJ, Chen X, Washington MK, Roland JT, Means AL, Eschrich SA, Yeatman TJ, Deane NG, Beauchamp RD (2012) Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of β-catenin. Gastroenterology 142(562–571):e562

    Google Scholar 

  • Fukuchi M, Nakajima M, Fukai Y, Miyazaki T, Masuda N, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H (2004) Increased expression of c-Ski as a co-repressor in transforming growth factor-β signaling correlates with progression of esophageal squamous cell carcinoma. Int J Cancer 108:818–824

    PubMed  CAS  Google Scholar 

  • Fukushige S, Furukawa T, Satoh K, Sunamura M, Kobari M, Koizumi M, Horii A (1998) Loss of chromosome 18q is an early event in pancreatic ductal tumorigenesis. Cancer Res 58:4222–4226

    PubMed  CAS  Google Scholar 

  • Giroux V (2006) p8 is a new target of gemcitabine in pancreatic cancer cells. Clin Cancer Res 12:235–241

    PubMed  CAS  Google Scholar 

  • Gittes GK (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326:4–35

    PubMed  CAS  Google Scholar 

  • Go C, Li P, Wang XJ (1999) Blocking transforming growth factor-β signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer Res 59:2861–2868

    PubMed  CAS  Google Scholar 

  • Go C, He W, Zhong L, Li P, Huang J, Brinkley BR, Wang XJ (2000) Aberrant cell cycle progression contributes to the early-stage accelerated carcinogenesis in transgenic epidermis expressing the dominant negative TGF-βRII. Oncogene 19:3623–3631

    PubMed  CAS  Google Scholar 

  • Gorska AE, Joseph H, Derynck R, Moses HL, Serra R (1998) Dominant-negative interference of the transforming growth factor-β type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ 9:229–238

    PubMed  CAS  Google Scholar 

  • Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL (2003) Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-β receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol 163:1539–1549

    PubMed  CAS  Google Scholar 

  • Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457

    PubMed  CAS  Google Scholar 

  • Guasch G, Schober M, Pasolli HA, Conn EB, Polak L, Fuchs E (2007) Loss of TGF-β signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell 12:313–327

    PubMed  CAS  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.[see comment]. Science 271:350–353

    PubMed  CAS  Google Scholar 

  • Hamamoto T, Beppu H, Okada H, Kawabata M, Kitamura T, Miyazono K, Kato M (2002) Compound disruption of smad2 accelerates malignant progression of intestinal tumors in apc knockout mice. Cancer Res 62:5955–5961

    PubMed  CAS  Google Scholar 

  • Hamidi T, Algul H, Cano CE, Sandi MJ, Molejon MI, Riemann M, Calvo EL, Lomberk G, Dagorn JC, Weih F, Urrutia R, Schmid RM, Iovanna JL (2012) Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. J Clin Invest 122:2092–2103

    PubMed  CAS  Google Scholar 

  • Han G, Lu SL, Li AG, He W, Corless CL, Kulesz-Martin M, Wang XJ (2005) Distinct mechanisms of TGF-β1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 115:1714–1723

    PubMed  CAS  Google Scholar 

  • Hansel DE, Kern SE, Hruban RH (2003) Molecular pathogenesis of pancreatic cancer. Annu Rev Genomics Hum Genet 4:237–256

    PubMed  CAS  Google Scholar 

  • Hatakeyama S (2011) TRIM proteins and cancer. Nat Rev Cancer 11:792–804

    PubMed  CAS  Google Scholar 

  • He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J (2006) Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGF-β pathway. Cell 125:929–941

    PubMed  CAS  Google Scholar 

  • Hesling C, Fattet L, Teyre G, Jury D, Gonzalo P, Lopez J, Vanbelle C, Morel AP, Gillet G, Mikaelian I, Rimokh R (2011) Antagonistic regulation of EMT by TIF1γ and Smad4 in mammary epithelial cells. EMBO Rep 12(7):665–672

    PubMed  CAS  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, Ross S, Conrads TP, Veenstra TD, Hitt BA, Kawaguchi Y, Johann D, Liotta LA, Crawford HC, Putt ME, Jacks T, Wright CV, Hruban RH, Lowy AM, Tuveson DA (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    PubMed  CAS  Google Scholar 

  • Hinshelwood RA, Huschtscha LI, Melki J, Stirzaker C, Abdipranoto A, Vissel B, Ravasi T, Wells CA, Hume DA, Reddel RR, Clark SJ (2007) Concordant epigenetic silencing of transforming growth factor-β signaling pathway genes occurs early in breast carcinogenesis. Cancer Res 67:11517–11527

    PubMed  CAS  Google Scholar 

  • Hohenstein P, Molenaar L, Elsinga J, Morreau H, van der Klift H, Struijk A, Jagmohan-Changur S, Smits R, van Kranen H, van Ommen GJ, Cornelisse C, Devilee P, Fodde R (2003) Serrated adenomas and mixed polyposis caused by a splice acceptor deletion in the mouse Smad4 gene. Genes Chromosomes Cancer 36:273–282

    PubMed  CAS  Google Scholar 

  • Howe JR, Roth S, Ringold JC, Summers RW, Jarvinen HJ, Sistonen P, Tomlinson IP, Houlston RS, Bevan S, Mitros FA, Stone EM, Aaltonen LA (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280:1086–1088

    PubMed  CAS  Google Scholar 

  • Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, Velculescu VE, Traverso G, Vogelstein B (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28:184–187

    PubMed  CAS  Google Scholar 

  • Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, Luttges J, Offerhaus GJ (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25:579–586

    PubMed  CAS  Google Scholar 

  • Hruban RH, Rustgi AK, Brentnall TA, Tempero MA, Wright CV, Tuveson DA (2006) Pancreatic cancer in mice and man: the Penn Workshop 2004. Cancer Res 66:14–17

    PubMed  CAS  Google Scholar 

  • Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S, Wright CV, Moses HL (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-β signaling in cooperation with active Kras expression. Genes Dev 20:3147–3160

    PubMed  CAS  Google Scholar 

  • Ijichi H, Chytil A, Gorska AE, Aakre ME, Bierie B, Tada M, Mohri D, Miyabayashi K, Asaoka Y, Maeda S, Ikenoue T, Tateishi K, Wright CV, Koike K, Omata M, Moses HL (2011) Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Invest 121:4106–4117

    PubMed  CAS  Google Scholar 

  • Ito Y, Yoshida H, Motoo Y, Iovanna JL, Nakamura Y, Kakudo K, Uruno T, Takamura Y, Miya A, Noguchi S, Kuma K, Miyauchi A (2005) Expression of p8 protein in breast carcinoma; an inverse relationship with apoptosis. Anticancer Res 25:833–837

    PubMed  CAS  Google Scholar 

  • Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM, Deng CX, Hruban RH, Adsay NV, Tuveson DA, Hingorani SR (2007) Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11:229–243

    PubMed  CAS  Google Scholar 

  • Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248

    PubMed  CAS  Google Scholar 

  • Jhappan C, Geiser AG, Kordon EC, Bagheri D, Hennighausen L, Roberts AB, Smith GH, Merlino G (1993) Targeting expression of a transforming growth factor-β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J 12:1835–1845

    PubMed  CAS  Google Scholar 

  • Johansson M, Dietrich C, Mandahl N, Hambraeus G, Johansson L, Clausen PP, Mitelman F, Heim S (1994) Karyotypic characterization of bronchial large cell carcinomas. Int J Cancer 57:463–467

    PubMed  CAS  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    PubMed  CAS  Google Scholar 

  • Kang SH, Bang YJ, Im YH, Yang HK, Lee DA, Lee HY, Lee HS, Kim NK, Kim SJ (1999) Transcriptional repression of the transforming growth factor-β type I receptor gene by DNA methylation results in the development of TGF-β resistance in human gastric cancer. Oncogene 18:7280–7286

    PubMed  CAS  Google Scholar 

  • Katuri V, Tang Y, Li C, Jogunoori W, Deng CX, Rashid A, Sidawy AN, Evans S, Reddy EP, Mishra B, Mishra L (2006) Critical interactions between TGF-β signaling/ELF, and E-cadherin/ β -catenin mediated tumor suppression. Oncogene 25:1871–1886

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CVE (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32:128–134

    PubMed  CAS  Google Scholar 

  • Kepkay R, Attwood KM, Ziv Y, Shiloh Y, Dellaire G (2011) KAP1 depletion increases PML nuclear body number in concert with ultrastructural changes in chromatin. Cell Cycle 10:308–322

    PubMed  CAS  Google Scholar 

  • Kern SE, Shi C, Hruban RH (2011) The complexity of pancreatic ductal cancers and multidimensional strategies for therapeutic targeting. J Pathol 223:295–306

    PubMed  CAS  Google Scholar 

  • Khetchoumian K, Teletin M, Tisserand J, Mark M, Herquel B, Ignat M, Zucman-Rossi J, Cammas F, Lerouge T, Thibault C, Metzger D, Chambon P, Losson R (2007) Loss of Trim24 (Tif1α) gene function confers oncogenic activity to retinoic acid receptor α. Nat Genet 39:1500–1506

    PubMed  CAS  Google Scholar 

  • Kim B-G, Li C, Qiao W, Mamura M, Kasperczak B, Anver M, Wolfraim L, Hong S, Mushinski E, Potter M, Kim S-J, Fu X-Y, Deng C, Letterio JJ (2006) Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441:1015–1019

    PubMed  CAS  Google Scholar 

  • Kim SJ, Im YH, Markowitz SD, Bang YJ (2000) Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine Growth Factor Rev 11:159–168

    PubMed  CAS  Google Scholar 

  • Kitamura T, Kometani K, Hashida H, Matsunaga A, Miyoshi H, Hosogi H, Aoki M, Oshima M, Hattori M, Takabayashi A, Minato N, Taketo MM (2007) SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39:467–475

    PubMed  CAS  Google Scholar 

  • Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR, Grizzle WE, Klug CA (2007) Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 67:8121–8130

    PubMed  CAS  Google Scholar 

  • Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH (1995) Ectopic TGF-β1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol 168:47–61

    PubMed  CAS  Google Scholar 

  • Kuang C, Xiao Y, Liu X, Stringfield TM, Zhang S, Wang Z, Chen Y (2006) In vivo disruption of TGF-β signaling by Smad7 leads to premalignant ductal lesions in the pancreas. Proc Natl Acad Sci USA 103:1858–1863

    PubMed  CAS  Google Scholar 

  • Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) Transforming growth factor-β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90:770–774

    PubMed  CAS  Google Scholar 

  • Kundu SD, Kim IY, Yang T, Doglio L, Lang S, Zhang X, Buttyan R, Kim SJ, Chang J, Cai X, Wang Z, Lee C (2000) Absence of proximal duct apoptosis in the ventral prostate of transgenic mice carrying the C3(1)-TGF-β type II dominant negative receptor. Prostate 43:118–124

    PubMed  CAS  Google Scholar 

  • Landi S (2009) Genetic predisposition and environmental risk factors to pancreatic cancer: A review of the literature. Mutat Res 681:299–307

    PubMed  CAS  Google Scholar 

  • Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P, Xu X, ten Dijke P, Mummery CL, Karlsson S (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J 20:1663–1673

    PubMed  CAS  Google Scholar 

  • Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-β. Annu Rev Immunol 16:137–161

    PubMed  CAS  Google Scholar 

  • Levy L, Hill CS (2006) Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17:41–58

    PubMed  CAS  Google Scholar 

  • Levy L, Howell M, Das D, Harkin S, Episkopou V, Hill CS (2007) Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol Cell Biol 27:6068–6083

    PubMed  CAS  Google Scholar 

  • Li W, Qiao W, Chen L, Xu X, Yang X, Li D, Li C, Brodie SG, Meguid MM, Hennighausen L, Deng CX (2003) Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 130:6143–6153

    PubMed  CAS  Google Scholar 

  • Liu X, Alexander V, Vijayachandra K, Bhogte E, Diamond I, Glick A (2001) Conditional epidermal expression of TGF-β1 blocks neonatal lethality but causes a reversible hyperplasia and alopecia. Proc Natl Acad Sci USA 98:9139–9144

    PubMed  CAS  Google Scholar 

  • Machnicka B, Grochowalska R, Boguslawska DM, Sikorski AF, Lecomte MC (2012) Spectrin-based skeleton as an actor in cell signaling. Cell Mol Life Sci 69:191–201

    PubMed  CAS  Google Scholar 

  • Maggio-Price L, Treuting P, Zeng W, Tsang M, Bielefeldt-Ohmann H, Iritani BM (2006) Helicobacter infection is required for inflammation and colon cancer in SMAD3-deficient mice. Cancer Res 66:828–838

    PubMed  CAS  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-βreceptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    PubMed  CAS  Google Scholar 

  • Massague J (1992) Receptors for the TGF-β family. Cell 69:1067–1070

    PubMed  CAS  Google Scholar 

  • Massague J (2008) TGF-β in Cancer. Cell 134:215–230

    PubMed  CAS  Google Scholar 

  • Matise LA, Palmer TD, Ashby WJ, Nashabi A, Chytil A, Aakre M, Pickup MW, Gorska AE, Zijlstra A, Moses HL (2012) Lack of transforming growth factor-β signaling promotes collective cancer cell invasion through tumor-stromal crosstalk. Breast Cancer Res 14:R98

    PubMed  CAS  Google Scholar 

  • Medrano EE (2003) Repression of TGF-β signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 22:3123–3129

    PubMed  CAS  Google Scholar 

  • Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res 347:11–20

    PubMed  CAS  Google Scholar 

  • Munoz NM, Upton M, Rojas A, Washington MK, Lin L, Chytil A, Sozmen EG, Madison BB, Pozzi A, Moon RT, Moses HL, Grady WM (2006) Transforming growth factor-β receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by Apc mutation. Cancer Res 66:9837–9844

    PubMed  CAS  Google Scholar 

  • Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH, Moody SE, Chodosh LA, Arteaga CL (2004) Conditional overexpression of active transforming growth factor-β1in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64:9002–9011

    PubMed  CAS  Google Scholar 

  • Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM, Zent R, Arteaga CL (2006) Activated type I TGF-β receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 25:3408–3423

    PubMed  CAS  Google Scholar 

  • Muraoka RS et al (2002) Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109(12):1551–1559

    PubMed  CAS  Google Scholar 

  • Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE, Moses HL, Arteaga CL (2003) Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor-β1. Mol Cell Biol 23:8691–8703

    PubMed  CAS  Google Scholar 

  • Ng KC, Tan AM, Chong YY, Lau LC, Lou J (1999) Congenital acute megakaryoblastic leukemia (M7) with chromosomal t(1;22)(p13;q13) translocation in a set of identical twins. J Pediatr Hematol Oncol 21:428–430

    PubMed  CAS  Google Scholar 

  • Nguyen AV, Pollard JW (2000) Transforming growth factor-β3 induces cell death during the first stage of mammary gland involution. Development 127:3107–3118

    PubMed  CAS  Google Scholar 

  • Nomura M, Li E (1998) Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393:786–790

    PubMed  CAS  Google Scholar 

  • Oshima M, Oshima H, Taketo MM (1996) TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179:297–302

    PubMed  CAS  Google Scholar 

  • Overholtzer M, Mailleux AA, Mouneimne G, Normand G, Schnitt SJ, King RW, Cibas ES, Brugge JS (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131:966–979

    PubMed  CAS  Google Scholar 

  • Pierce DF Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF, Daniel CW, Hogan BL, Moses HL (1993) Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Dev 7:2308–2317

    PubMed  CAS  Google Scholar 

  • Pierce DF Jr, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ Jr, Moses HL (1995) Mammary tumor suppression by transforming growth factor-β1 transgene expression. Proc Natl Acad Sci USA 92:4254–4258

    PubMed  CAS  Google Scholar 

  • Pommier RM, Gout J, Vincent DF, Cano CE, Kaniewski B, Martel S, Rodriguez J, Fourel G, Valcourt U, Marie JC, Iovanna JL, Bartholin L (2012) The human NUPR1/P8 gene is transcriptionally activated by transforming growth factor-β via the Smad signalling pathway. Biochem J 445:285–293

    PubMed  CAS  Google Scholar 

  • Poser I, Rothhammer T, Dooley S, Weiskirchen R, Bosserhoff AK (2005) Characterization of Sno expression in malignant melanoma. Int J Oncol 26:1411–1417

    PubMed  CAS  Google Scholar 

  • Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T (1995) Transforming growth factor-β3 is required for secondary palate fusion. Nat Genet 11:409–414

    PubMed  CAS  Google Scholar 

  • Pu H, Collazo J, Jones E, Gayheart D, Sakamoto S, Vogt A, Mitchell B, Kyprianou N (2009) Dysfunctional transforming growth factor-β receptor II accelerates prostate tumorigenesis in the TRAMP mouse model. Cancer Res 69:7366–7374

    PubMed  CAS  Google Scholar 

  • Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, Erlich RL, Greulich H, Lawrence MS, Lennon NJ, McKenna A, Meldrim J, Ramos AH, Ross MG, Russ C, Shefler E, Sivachenko A, Sogoloff B, Stojanov P, Tamayo P, Mesirov JP, Amani V, Teider N, Sengupta S, Francois JP, Northcott PA, Taylor MD, Yu F, Crabtree GR, Kautzman AG, Gabriel SB, Getz G, Jager N, Jones DT, Lichter P, Pfister SM, Roberts TM, Meyerson M, Pomeroy SL, Cho YJ (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488(7409):106–110

    PubMed  CAS  Google Scholar 

  • Qiao W, Li AG, Owens P, Xu X, Wang XJ, Deng CX (2006) Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 25:207–217

    PubMed  CAS  Google Scholar 

  • Redman RS, Katuri V, Tang Y, Dillner A, Mishra B, Mishra L (2005) Orofacial and gastrointestinal hyperplasia and neoplasia in smad4+/− and elf+/−/smad4+/− mutant mice. J Oral Pathol Med 34:23–29

    PubMed  Google Scholar 

  • Reed JA, Bales E, Xu W, Okan NA, Bandyopadhyay D, Medrano EE (2001) Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor-β signaling. Cancer Res 61:8074–8078

    PubMed  CAS  Google Scholar 

  • Ross SR (2010) Mouse mammary tumor virus molecular biology and oncogenesis. Viruses 2:2000–2012

    PubMed  CAS  Google Scholar 

  • Saam JR, Gordon JI (1999) Inducible gene knockouts in the small intestinal and colonic epithelium. J Biol Chem 274:38071–38082

    PubMed  CAS  Google Scholar 

  • Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGF-β2 knockout mice have multiple developmental defects that are non- overlapping with other TGF-β knockout phenotypes. Development 124:2659–2670

    PubMed  CAS  Google Scholar 

  • Sawyer JR, Thomas EL, Lukacs JL, Swanson CM, Ding Y, Parham DM, Thomas JR, Nicholas RW (2002) Recurring breakpoints of 1p13 approximately p22 in osteochondroma. Cancer Genet Cytogenet 138:102–106

    PubMed  CAS  Google Scholar 

  • Schleger C, Arens N, Zentgraf H, Bleyl U, Verbeke C (2000) Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH). J Pathol 191:27–32

    PubMed  CAS  Google Scholar 

  • Sellheyer K, Bickenbach JR, Rothnagel JA, Bundman D, Longley MA, Krieg T, Roche NS, Roberts AB, Roop DR (1993) Inhibition of skin development by overexpression of transforming growth factor-β1 in the epidermis of transgenic mice. Proc Natl Acad Sci USA 90:5237–5241

    PubMed  CAS  Google Scholar 

  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359:693–699

    PubMed  CAS  Google Scholar 

  • Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor-β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100:8430–8435

    PubMed  CAS  Google Scholar 

  • Silverman JF, Dabbs DJ, Finley JL, Geisinger KR (1988) Fine-needle aspiration biopsy of pleomorphic (giant cell) carcinoma of the pancreas. Cytologic, immunocytochemical, and ultrastructural findings. Am J Clin Pathol 89:714–720

    PubMed  CAS  Google Scholar 

  • Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J, Mak TW (1998) The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev 12:107–119

    PubMed  CAS  Google Scholar 

  • Sodir NM, Chen X, Park R, Nickel AE, Conti PS, Moats R, Bading JR, Shibata D, Laird PW (2006) Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+ mice. Cancer Res 66:8430–8438

    PubMed  CAS  Google Scholar 

  • Stenvers KL, Tursky ML, Harder KW, Kountouri N, Amatayakul-Chantler S, Grail D, Small C, Weinberg RA, Sizeland AM, Zhu HJ (2003) Heart and liver defects and reduced transforming growth factor-β2 sensitivity in transforming growth factor-β type III receptor-deficient embryos. Mol Cell Biol 23:4371–4385

    PubMed  CAS  Google Scholar 

  • Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerod A, Lee MT, Shen CY, Tee BT, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, van’t Veer L, Foekens J, Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis-Filho JS, Aparicio SA, Salomon AV, Borresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404

    PubMed  CAS  Google Scholar 

  • Sternlicht MD (2006) Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res 8:201

    PubMed  Google Scholar 

  • Su SB, Motoo Y, Iovanna JL, Berthezene P, Xie MJ, Mouri H, Ohtsubo K, Matsubara F, Sawabu N (2001a) Overexpression of p8 is inversely correlated with apoptosis in pancreatic cancer. Clin Cancer Res 7:1320–1324

    PubMed  CAS  Google Scholar 

  • Su SB, Motoo Y, Iovanna JL, Xie MJ, Mouri H, Ohtsubo K, Yamaguchi Y, Watanabe H, Okai T, Matsubara F, Sawabu N (2001b) Expression of p8 in human pancreatic cancer. Clin Cancer Res 7:309–313

    PubMed  CAS  Google Scholar 

  • Subramanian G, Schwarz RE, Higgins L, McEnroe G, Chakravarty S, Dugar S, Reiss M (2004) Targeting endogenous transforming growth factor-β receptor signaling in Smad4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res 64:5200–5211

    PubMed  CAS  Google Scholar 

  • Takaku K, Oshima M, Miyoshi H, Matsui M, Seldin MF, Taketo MM (1998) Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92:645–656

    PubMed  CAS  Google Scholar 

  • Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM (1999) Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 59:6113–6117

    PubMed  CAS  Google Scholar 

  • Takaku K, Wrana JL, Robertson EJ, Taketo MM (2002) No effects of Smad2 (madh2) null mutation on malignant progression of intestinal polyps in Apc(delta716) knockout mice. Cancer Res 62:4558–4561

    PubMed  CAS  Google Scholar 

  • Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, Letterio JJ, Wakefield LM (1998) Transforming growth factor-β1is a new form of tumor suppressor with true haploid insufficiency. Nat Med 4:802–807

    PubMed  CAS  Google Scholar 

  • Tang Y, Katuri V, Srinivasan R, Fogt F, Redman R, Anand G, Said A, Fishbein T, Zasloff M, Reddy EP, Mishra B, Mishra L (2005) Transforming growth factor-β suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res 65:4228–4237

    PubMed  CAS  Google Scholar 

  • Tracey KJ, O’Brien MJ, Williams LF, Klibaner M, George PK, Saravis CA, Zamcheck N (1984) Signet ring carcinoma of the pancreas, a rare variant with very high CEA values. Immunohistologic comparison with adenocarcinoma. Dig Dis Sci 29:573–576

    PubMed  CAS  Google Scholar 

  • Trobridge P, Knoblaugh S, Washington MK, Munoz NM, Tsuchiya KD, Rojas A, Song X, Ulrich CM, Sasazuki T, Shirasawa S (2009) TGF-β receptor inactivation and mutant kras induce intestinal neoplasms in mice via a β-catenin-independent pathway. Gastroenterology 136:1680–1688, e1687

    PubMed  CAS  Google Scholar 

  • Tsai WW, Wang Z, Yiu TT, Akdemir KC, Xia W, Winter S, Tsai CY, Shi X, Schwarzer D, Plunkett W, Aronow B, Gozani O, Fischle W, Hung MC, Patel DJ, Barton MC (2010) TRIM24 links a non-canonical histone signature to breast cancer. Nature 468:927–932

    PubMed  CAS  Google Scholar 

  • van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    PubMed  Google Scholar 

  • van Hattem WA, Brosens LA, de Leng WW, Morsink FH, Lens S, Carvalho R, Giardiello FM, Offerhaus GJ (2008) Large genomic deletions of Smad4, Bmpr1A and Pten in juvenile polyposis. Gut 57:623–627

    PubMed  Google Scholar 

  • Vincent DF, Yan KP, Treilleux I, Gay F, Arfi V, Kaniewski B, Marie JC, Lepinasse F, Martel S, Goddard-Leon S, Iovanna JL, Dubus P, Garcia S, Puisieux A, Rimokh R, Bardeesy N, Scoazec JY, Losson R, Bartholin L (2009) Inactivation of TIF1γ cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet 5:e1000575

    PubMed  Google Scholar 

  • Vincent DF, Gout J, Chuvin N, Arfi V, Pommier RM, Bertolino P, Jonckheere N, Ripoche D, Kaniewski B, Martel S, Langlois JB, Goddard-Leon S, Colombe A, Janier M, Van Seuningen I, Losson R, Valcourt U, Treilleux I, Dubus P, Bardeesy N, Bartholin L (2012) Tif1γ suppresses murine pancreatic tumoral transformation by a Smad4-independent pathway. Am J Pathol 180:2214–2221

    PubMed  CAS  Google Scholar 

  • Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ (1998) Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92:797–808

    PubMed  CAS  Google Scholar 

  • Wang XJ, Greenhalgh DA, Bickenbach JR, Jiang A, Bundman DS, Krieg T, Derynck R, Roop DR (1997) Expression of a dominant-negative type II transforming growth factor-β receptor in the epidermis of transgenic mice blocks TGF-β-mediated growth inhibition. Proc Natl Acad Sci USA 94:2386–2391

    PubMed  CAS  Google Scholar 

  • Wang XJ, Liefer KM, Tsai S, O’Malley BW, Roop DR (1999) Development of gene-switch transgenic mice that inducibly express transforming growth factor-β1in the epidermis. Proc Natl Acad Sci USA 96:8483–8488

    PubMed  CAS  Google Scholar 

  • Weeks BH, He W, Olson KL, Wang XJ (2001) Inducible expression of transforming growth factor-β1 in papillomas causes rapid metastasis. Cancer Res 61:7435–7443

    PubMed  CAS  Google Scholar 

  • Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng CX (1998) Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci USA 95:9378–9383

    PubMed  CAS  Google Scholar 

  • Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L, Zhou YX, Weinstein M, Kim SJ, Deng CX (2000) Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19:1868–1874

    PubMed  CAS  Google Scholar 

  • Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X, Li X, Han X, Xia Z, Deng H, Yang X (2005) Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 65:8671–8678

    PubMed  CAS  Google Scholar 

  • Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF-β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    PubMed  CAS  Google Scholar 

  • Yang X, Li C, Xu X, Deng C (1998) The tumor suppressor Smad4/Dpc4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci USA 95:3667–3672

    PubMed  CAS  Google Scholar 

  • Yang YA, Tang B, Robinson G, Hennighausen L, Brodie SG, Deng CX, Wakefield LM (2002) Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-β. Cell Growth Differ 13:123–130

    PubMed  CAS  Google Scholar 

  • Yang YA, Zhang GM, Feigenbaum L, Zhang YE (2006) Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation of Bcl-2. Cancer Cell 9:445–457

    PubMed  CAS  Google Scholar 

  • Zeng Q, Phukan S, Xu Y, Sadim M, Rosman DS, Pennison M, Liao J, Yang GY, Huang CC, Valle L, Di Cristofano A, de la Chapelle A, Pasche B (2009) TGF-βR1 haploinsufficiency is a potent modifier of colorectal cancer development. Cancer Res 69:678–686

    PubMed  CAS  Google Scholar 

  • Zhang F, Lundin M, Ristimaki A, Heikkila P, Lundin J, Isola J, Joensuu H, Laiho M (2003) Ski-related novel protein N (SnoN), a negative controller of transforming growth factor-β signaling, is a prognostic marker in estrogen receptor-positive breast carcinomas. Cancer Res 63:5005–5010

    PubMed  CAS  Google Scholar 

  • Zhu Y, Richardson JA, Parada LF, Graff JM (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94:703–714

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bartholin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Valcourt, U., Vincent, D.F., Bartholin, L. (2013). TGF-β as Tumor Suppressor: Lessons from Mouse Models. In: Moustakas, A., Miyazawa, K. (eds) TGF-β in Human Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54409-8_6

Download citation

Publish with us

Policies and ethics