Skip to main content

TGF-β Signaling in Stem Cell Fate Determination

  • Chapter
  • First Online:
TGF-β in Human Disease

Abstract

Stem cells, which can self-renew and can differentiate to various cell types, have great potential applications in regenerative medicine. The signaling pathways employed by TGF-β family members (including TGF-β, Activin, Nodal, BMPs, and others) are evolutionarily conserved and regulate embryogenesis and adult tissue homeostasis and repair. Disturbance of production or bioactivity of the ligands and of intracellular signal transduction elicited from TGF-β family members (generally called TGF-β signaling) can lead to various diseases, including cancer, fibrosis, and cardiovascular diseases. Consistent with their critical roles in directing normal development, TGF-β family members have been established as key extrinsic signals that regulate fate commitment in both embryonic and adult stem cells. In this chapter, we review the functions and the underlying molecular mechanisms of TGF-β family members in determining embryonic stem cell fate choices between self-renewal, commitment, and subsequent differentiation to three germ layers and their progenies. We also summarize how TGF-β-related factors control fate commitment of five extensively investigated adult stem cells—intestinal, hair follicle, neural, hematopoietic, and mesenchymal stem cells. The principles gained from these studies illustrate on how stem cell fates can be regulated by extrinsic signals and pave a road for the potential medical applications of stem cells, either as transplanted cells after ex vivo expansion or as in vivo resident stem cells activated in endogenous stem cell compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auclair BA, Benoit YD, Rivard N, Mishina Y, Perreault N (2007) Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology 133:887–896. doi:S0016-5085(07)01297-8

    PubMed  CAS  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007. doi:nature06196

    PubMed  CAS  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584. doi:10.1016/j.biocel.2003.11.001

    PubMed  CAS  Google Scholar 

  • Batard P, Monier MN, Fortunel N, Ducos K, Sansilvestri-Morel P, Phan T, Hatzfeld A, Hatzfeld JA (2000) TGF-β1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J Cell Sci 113:383–390

    PubMed  CAS  Google Scholar 

  • Besser D (2004) Expression of nodal, lefty-A, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J Biol Chem 279:45076–45084. doi:10.1074/jbc.M404979200

    PubMed  CAS  Google Scholar 

  • Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L, Dick JE (1999) Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med 189:1139–1148

    PubMed  CAS  Google Scholar 

  • Blank U, Karlsson G, Moody JL, Utsugisawa T, Magnusson M, Singbrant S, Larsson J, Karlsson S (2006) Smad7 promotes self-renewal of hematopoietic stem cells. Blood 108:4246–4254. doi:blood-2006-02-005611

    PubMed  CAS  Google Scholar 

  • Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217. doi:nrm2636

    PubMed  CAS  Google Scholar 

  • Blessing M, Nanney LB, King LE, Jones CM, Hogan BL (1993) Transgenic mice as a model to study the role of TGF-β-related molecules in hair follicles. Genes Dev 7:204–215

    PubMed  CAS  Google Scholar 

  • Botchkarev VA, Botchkareva NV, Roth W, Nakamura M, Chen LH, Herzog W, Lindner G, McMahon JA, Peters C, Lauster R, McMahon AP, Paus R (1999) Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol 1:158–164. doi:10.1038/11078

    PubMed  CAS  Google Scholar 

  • Botchkarev VA, Botchkareva NV, Nakamura M, Huber O, Funa K, Lauster R, Paus R, Gilchrest BA (2001) Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB J 15:2205–2214. doi:10.1096/fj.01-0207

    PubMed  CAS  Google Scholar 

  • Brown S, Teo A, Pauklin S, Hannan N, Cho CH, Lim B, Vardy L, Dunn NR, Trotter M, Pedersen R, Vallier L (2011) Activin/Nodal signaling controls divergent transcriptional networks in human embryonic stem cells and in endoderm progenitors. Stem Cells 29:1176–1185. doi:10.1002/stem.666

    PubMed  CAS  Google Scholar 

  • Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45:1229–1239. doi:10.1002/hep.21582

    PubMed  CAS  Google Scholar 

  • Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, Bhatia M (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102:906–915. doi:10.1182/blood-2003-03-0832

    PubMed  CAS  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280. doi:nbt.1529

    PubMed  CAS  Google Scholar 

  • Chang H, Matzuk MM (2001) Smad5 is required for mouse primordial germ cell development. Mech Dev 104:61–67. doi:S0925477301003677

    PubMed  CAS  Google Scholar 

  • Chen G, Ye Z, Yu X, Zou J, Mali P, Brodsky RA, Cheng L (2008a) Trophoblast differentiation defect in human embryonic stem cells lacking PIG-A and GPI-anchored cell-surface proteins. Cell Stem Cell 2:345–355. doi:S1934-5909(08)00068-4

    PubMed  CAS  Google Scholar 

  • Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008b) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    PubMed  CAS  Google Scholar 

  • Chen T, Heller E, Beronja S, Oshimori N, Stokes N, Fuchs E (2012) An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature 485:104–108. doi:nature10940

    PubMed  CAS  Google Scholar 

  • Colak D, Mori T, Brill MS, Pfeifer A, Falk S, Deng C, Monteiro R, Mummery C, Sommer L, Gotz M (2008) Adult neurogenesis requires Smad4-mediated bone morphogenic protein signaling in stem cells. J Neurosci 28:434–446. doi:28/2/434

    PubMed  CAS  Google Scholar 

  • D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541. doi:nbt1163

    PubMed  Google Scholar 

  • Das P, Ezashi T, Schulz LC, Westfall SD, Livingston KA, Roberts RM (2007) Effects of fgf2 and oxygen in the bmp4-driven differentiation of trophoblast from human embryonic stem cells. Stem Cell Res 1:61–74. doi:10.1016/j.scr.2007.09.004

    PubMed  Google Scholar 

  • Davis RP, Ng ES, Costa M, Mossman AK, Sourris K, Elefanty AG, Stanley EG (2008) Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111:1876–1884. doi:blood-2007-06-093609

    PubMed  CAS  Google Scholar 

  • Ducos K, Panterne B, Fortunel N, Hatzfeld A, Monier MN, Hatzfeld J (2000) p21(cip1) mRNA is controlled by endogenous transforming growth factor-β1 in quiescent human hematopoietic stem/progenitor cells. J Cell Physiol 184:80–85. doi:10.1002/(SICI)1097-4652

    PubMed  CAS  Google Scholar 

  • Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136. doi:ni1560

    PubMed  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    PubMed  CAS  Google Scholar 

  • Falk S, Wurdak H, Ittner LM, Ille F, Sumara G, Schmid MT, Draganova K, Lang KS, Paratore C, Leveen P, Suter U, Karlsson S, Born W, Ricci R, Gotz M, Sommer L (2008) Brain area-specific effect of TGF-β signaling on Wnt-dependent neural stem cell expansion. Cell Stem Cell 2:472–483. doi:S1934-5909(08)00118-5

    PubMed  CAS  Google Scholar 

  • Fei T, Xia K, Li Z, Zhou B, Zhu S, Chen H, Zhang J, Chen Z, Xiao H, Han JD, Chen YG (2010a) Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Res 20:36–44

    PubMed  CAS  Google Scholar 

  • Fei T, Zhu S, Xia K, Zhang J, Li Z, Han JD, Chen YG (2010b) Smad2 mediates Activin/Nodal signaling in mesendoderm differentiation of mouse embryonic stem cells. Cell Res 20: 1306–1318

    PubMed  CAS  Google Scholar 

  • Feng XH, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    PubMed  CAS  Google Scholar 

  • Gadue P, Huber TL, Paddison PJ, Keller GM (2006) Wnt and TGF-β signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci USA 103(45):16806–16811. doi:0603916103

    PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438. doi:8300

    PubMed  CAS  Google Scholar 

  • Goldman DC, Bailey AS, Pfaffle DL, Al Masri A, Christian JL, Fleming WH (2009) BMP4 regulates the hematopoietic stem cell niche. Blood 114:4393–4401. doi:blood-2009-02-206433

    PubMed  CAS  Google Scholar 

  • Gomes WA, Mehler MF, Kessler JA (2003) Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol 255:164–177. doi:S0012160602000374

    PubMed  CAS  Google Scholar 

  • Gossrau G, Thiele J, Konang R, Schmandt T, Brustle O (2007) Bone morphogenetic protein-mediated modulation of lineage diversification during neural differentiation of embryonic stem cells. Stem Cells 25:939–949. doi:2006–0299

    PubMed  CAS  Google Scholar 

  • Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, Shafritz DA, Keller G (2006) BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol 24:1402–1411. doi:nbt1258

    PubMed  CAS  Google Scholar 

  • Greber B, Coulon P, Zhang M, Moritz S, Frank S, Muller-Molina AJ, Arauzo-Bravo MJ, Han DW, Pape HC, Scholer HR (2011) FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J 30:4874–4884. doi:emboj2011407

    PubMed  CAS  Google Scholar 

  • Green MD, Chen A, Nostro MC, d'Souza SL, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck HW (2011) Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 29:267–272. doi:nbt.1788

    PubMed  CAS  Google Scholar 

  • Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ, Clevers H (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303:1684–1686. doi:10.1126/science.1093587

    PubMed  CAS  Google Scholar 

  • Hayashi K, Kobayashi T, Umino T, Goitsuka R, Matsui Y, Kitamura D (2002) SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mech Dev 118:99–109. doi:S092547730200237X

    PubMed  CAS  Google Scholar 

  • He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li L (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat Genet 36(10):1117–1121. doi:10.1038/ng1430

    PubMed  CAS  Google Scholar 

  • He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J (2006) Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell 125:929–941. doi:S0092-8674(06)00518-6

    PubMed  CAS  Google Scholar 

  • Heldin CH, Miyazono K, ten Dijke P (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    PubMed  CAS  Google Scholar 

  • Horsley V, Aliprantis AO, Polak L, Glimcher LH, Fuchs E (2008) NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132:299–310. doi:S0092-8674(07)01614-5

    PubMed  CAS  Google Scholar 

  • Huber TL, Zhou Y, Mead PE, Zon LI (1998) Cooperative effects of growth factors involved in the induction of hematopoietic mesoderm. Blood 92:4128–4137

    PubMed  CAS  Google Scholar 

  • Irion S, Clarke RL, Luche H, Kim I, Morrison SJ, Fehling HJ, Keller GM (2010) Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development 137:2829–2839. doi:dev.042119

    PubMed  CAS  Google Scholar 

  • James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132:1273–1282. doi:dev.01706

    PubMed  CAS  Google Scholar 

  • Jian H, Shen X, Liu I, Semenov M, He X, Wang XF (2006) Smad3-dependent nuclear translocation of β-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 20:666–674. doi:20/6/666

    PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49. doi:10.1038/nature00870

    PubMed  CAS  Google Scholar 

  • Jin W, Takagi T, Kanesashi SN, Kurahashi T, Nomura T, Harada J, Ishii S (2006) Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell 10:461–471. doi:S1534-5807(06)00113-4

    PubMed  CAS  Google Scholar 

  • Kalluri R, Zeisberg M (2003) Exploring the connection between chronic renal fibrosis and bone morphogenic protein-7. Histol Histopathol 18:217–224

    PubMed  CAS  Google Scholar 

  • Kamiya D, Banno S, Sasai N, Ohgushi M, Inomata H, Watanabe K, Kawada M, Yakura R, Kiyonari H, Nakao K, Jakt LM, Nishikawa S, Sasai Y (2011) Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature 470:503–509. doi:nature09726

    PubMed  CAS  Google Scholar 

  • Karlsson G, Blank U, Moody JL, Ehinger M, Singbrant S, Deng CX, Karlsson S (2007) Smad4 is critical for self-renewal of hematopoietic stem cells. J Exp Med 204:467–474. doi:jem.20060465

    PubMed  CAS  Google Scholar 

  • Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240. doi:S1934-5909(10)00703-4

    PubMed  CAS  Google Scholar 

  • Kee K, Gonsalves JM, Clark AT, Pera RA (2006) Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev 15:831–837. doi:10.1089/scd.2006.15.831

    PubMed  CAS  Google Scholar 

  • Kohyama J, Sanosaka T, Tokunaga A, Takatsuka E, Tsujimura K, Okano H, Nakashima K (2010) BMP-induced REST regulates the establishment and maintenance of astrocytic identity. J Cell Biol 189:159–170. doi:jcb.200908048

    PubMed  CAS  Google Scholar 

  • Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902

    PubMed  CAS  Google Scholar 

  • Larsson J, Blank U, Klintman J, Magnusson M, Karlsson S (2005) Quiescence of hematopoietic stem cells and maintenance of the stem cell pool is not dependent on TGF-β signaling in vivo. Exp Hematol 33:592–596. doi:S0301-472X(05)00091-3

    PubMed  CAS  Google Scholar 

  • Lavery K, Swain P, Falb D, Alaoui-Ismaili MH (2008) BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 283:20948–20958. doi:M800850200

    PubMed  CAS  Google Scholar 

  • Lee D, Park C, Lee H, Lugus JJ, Kim SH, Arentson E, Chung YS, Gomez G, Kyba M, Lin S, Janknecht R, Lim DS, Choi K (2008) ER71 acts downstream of BMP, notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2:497–507. doi:S1934-5909(08)00120-3

    PubMed  CAS  Google Scholar 

  • Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JB, Zon LI, Daley GQ (2008) BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2:72–82. doi:S1934-5909(07)00239-1

    PubMed  CAS  Google Scholar 

  • Li Z, Chen YG (2012) Fine-tune of intrinsic ERK activity by extrinsic BMP signaling in mouse embryonic stem cells. Protein Cell 3:401–404. doi:10.1007/s13238-012-2925-5

    PubMed  CAS  Google Scholar 

  • Li Z, Fei T, Zhang J, Zhu G, Wang L, Lu D, Chi X, Teng Y, Hou N, Yang X, Zhang H, Han JD, Chen YG (2012) BMP4 signaling acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. Cell Stem Cell 10:171–182. doi:S1934-5909(11)00597-2

    PubMed  CAS  Google Scholar 

  • Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726. doi:S0896-6273(00)00148-3

    PubMed  CAS  Google Scholar 

  • Liu F, Shao LE, Yu J (2000) Truncated activin type II receptor inhibits erythroid differentiation in K562 cells. J Cell Biochem 78:24–33. doi:10.1002/(SICI)1097-4644

    PubMed  CAS  Google Scholar 

  • Liu Z, Tang Y, Qiu T, Cao X, Clemens TL (2006) A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells. J Biol Chem 281:17156–17163. doi:M513812200

    PubMed  CAS  Google Scholar 

  • Loncar D (1992) Brown adipose tissue as a derivative of mesoderm grafted below the kidney capsule. A model for differentiation of isolated rat mesoderm. Int J Dev Biol 36:265–274

    PubMed  CAS  Google Scholar 

  • Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K (2004) Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23:552–563. doi:10.1038/sj.emboj.7600067

    PubMed  CAS  Google Scholar 

  • Maeno M, Mead PE, Kelley C, Xu RH, Kung HF, Suzuki A, Ueno N, Zon LI (1996) The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 88:1965–1972

    PubMed  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    PubMed  CAS  Google Scholar 

  • Massague J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13:616–630. doi:nrm3434

    PubMed  CAS  Google Scholar 

  • Massague J, Chen YG (2000) Controlling TGF-β signaling. Genes Dev 14:627–644

    PubMed  CAS  Google Scholar 

  • McLean AB, D’Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, Liu H, Xu Y, Baetge EE, Dalton S (2007) Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25:29–38. doi:25/1/29

    PubMed  CAS  Google Scholar 

  • Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, San Emeterio J, Hortiguela R, Marques-Torrejon MA, Nakashima K, Colak D, Gotz M, Farinas I, Gage FH (2010) Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7:78–89. doi:S1934-5909(10)00171-2

    PubMed  CAS  Google Scholar 

  • Mizuseki K, Sakamoto T, Watanabe K, Muguruma K, Ikeya M, Nishiyama A, Arakawa A, Suemori H, Nakatsuji N, Kawasaki H, Murakami F, Sasai Y (2003) Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci USA 100:5828–5833. doi:10.1073/pnas.1037282100

    PubMed  CAS  Google Scholar 

  • Morizane A, Doi D, Kikuchi T, Nishimura K, Takahashi J (2011) Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J Neurosci Res 89:117–126. doi:10.1002/jnr.22547

    PubMed  CAS  Google Scholar 

  • Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-β signal transduction. J Cell Sci 114:4359–4369

    PubMed  CAS  Google Scholar 

  • Munoz-Sanjuan I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3:271–280. doi:10.1038/nrn786

    PubMed  CAS  Google Scholar 

  • Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284:479–482

    PubMed  CAS  Google Scholar 

  • Nakashima K, Takizawa T, Ochiai W, Yanagisawa M, Hisatsune T, Nakafuku M, Miyazono K, Kishimoto T, Kageyama R, Taga T (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA 98:5868–5873. doi:10.1073/pnas.101109698

    PubMed  CAS  Google Scholar 

  • Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492. doi:S1934-5909(09)00224-0

    PubMed  CAS  Google Scholar 

  • Noel D, Gazit D, Bouquet C, Apparailly F, Bony C, Plence P, Millet V, Turgeman G, Perricaudet M, Sany J, Jorgensen C (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22:74–85. doi:10.1634/stemcells.22-1-74

    PubMed  CAS  Google Scholar 

  • Nostro MC, Cheng X, Keller GM, Gadue P (2008) Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2:60–71. doi:S1934-5909(07)00228-7

    PubMed  CAS  Google Scholar 

  • Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park IH, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G (2011) Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138:861–871. doi:dev.055236

    PubMed  CAS  Google Scholar 

  • Ogawa K, Saito A, Matsui H, Suzuki H, Ohtsuka S, Shimosato D, Morishita Y, Watabe T, Niwa H, Miyazono K (2007) Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. J Cell Sci 120:55–65. doi:120/1/55

    PubMed  CAS  Google Scholar 

  • Okafuji K, Kaku K, Seguchi M, Tanaka H, Azuno Y, Kaneko T (1995) Effects of activin A/erythroid differentiation factor on erythroid and megakaryocytic differentiations of mouse erythroleukemia (Friend) cells: evidence for two distinct modes of cell response. Exp Hematol 23:210–216

    PubMed  CAS  Google Scholar 

  • Okamura D, Hayashi K, Matsui Y (2005) Mouse epiblasts change responsiveness to BMP4 signal required for PGC formation through functions of extraembryonic ectoderm. Mol Reprod Dev 70:20–29. doi:10.1002/mrd.20136

    PubMed  CAS  Google Scholar 

  • Orkin SH (2000) Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1:57–64. doi:10.1038/35049577

    PubMed  CAS  Google Scholar 

  • Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644. doi:S0092-8674(08)00125-6

    PubMed  CAS  Google Scholar 

  • Oshimori N, Fuchs E (2012) Paracrine TGF-β signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10:63–75. doi:S1934-5909(11)00533-9

    PubMed  CAS  Google Scholar 

  • Park SW, Jun Koh Y, Jeon J, Cho YH, Jang MJ, Kang Y, Kim MJ, Choi C, Sook Cho Y, Chung HM, Young Koh G, Han YM (2010) Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways. Blood 116:5762–5772. doi:blood-2010-04-280719

    PubMed  CAS  Google Scholar 

  • Partridge K, Yang X, Clarke NM, Okubo Y, Bessho K, Sebald W, Howdle SM, Shakesheff KM, Oreffo RO (2002) Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds. Biochem Biophys Res Commun 292:144–152. doi:S0006291X02966234

    PubMed  CAS  Google Scholar 

  • Pearson S, Sroczynska P, Lacaud G, Kouskoff V (2008) The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF. Development 135:1525–1535. doi:dev.011767

    PubMed  CAS  Google Scholar 

  • Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269–1280. doi:10.1242/jcs.00970

    PubMed  CAS  Google Scholar 

  • Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG (2007) Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 25:2206–2214. doi:2006–0713

    PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  • Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong CM (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451:340–344. doi:nature06457

    PubMed  CAS  Google Scholar 

  • Saitou M (2009) Germ cell specification in mice. Curr Opin Genet Dev 19:386–395. doi:S0959-437X(09)00113-0

    PubMed  CAS  Google Scholar 

  • Saitou M, Yamaji M (2010) Germ cell specification in mice: signaling, transcription regulation, and epigenetic consequences. Reproduction 139:931–942. doi:REP-10-0043

    PubMed  CAS  Google Scholar 

  • Samanta J, Kessler JA (2004) Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131:4131–4142. doi:10.1242/dev.01273

    PubMed  CAS  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265. doi:nature07935

    PubMed  CAS  Google Scholar 

  • Scandura JM, Boccuni P, Massague J, Nimer SD (2004) Transforming growth factor β-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci USA 101:15231–15236. doi:0406771101

    PubMed  CAS  Google Scholar 

  • Schmitt B, Ringe J, Haupl T, Notter M, Manz R, Burmester GR, Sittinger M, Kaps C (2003) BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation 71:567–577. doi:S0301-4681(09)60538-7

    PubMed  CAS  Google Scholar 

  • Schulz TJ, Tseng YH (2009) Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 20:523–531. doi:S1359-6101(09)00094-X

    PubMed  CAS  Google Scholar 

  • Schulz TC, Noggle SA, Palmarini GM, Weiler DA, Lyons IG, Pensa KA, Meedeniya AC, Davidson BP, Lambert NA, Condie BG (2004) Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells 22:1218–1238. doi:22/7/1218

    PubMed  CAS  Google Scholar 

  • Schwall RH, Lai C (1991) Erythroid differentiation bioassays for activin. Methods Enzymol 198:340–346

    PubMed  CAS  Google Scholar 

  • Scoville DH, Sato T, He XC, Li L (2008) Current view: intestinal stem cells and signaling. Gastroenterology 134:849–864. doi:S0016-5085(08)00185-6

    PubMed  CAS  Google Scholar 

  • Seuntjens E, Umans L, Zwijsen A, Sampaolesi M, Verfaillie CM, Huylebroeck D (2009) Transforming growth factor type β and Smad family signaling in stem cell function. Cytokine Growth Factor Rev 20:449–458. doi:S1359-6101(09)00080-X

    PubMed  CAS  Google Scholar 

  • Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC (2003) BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem 90:1112–1127. doi:10.1002/jcb.10734

    PubMed  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700. doi:S009286740300432X

    PubMed  CAS  Google Scholar 

  • Shiozaki M, Kosaka M, Eto Y (1998) Activin A: a commitment factor in erythroid differentiation. Biochem Biophys Res Commun 242:631–635. doi:S0006-291X(97)98020-7

    PubMed  CAS  Google Scholar 

  • Singbrant S, Karlsson G, Ehinger M, Olsson K, Jaako P, Miharada K, Stadtfeld M, Graf T, Karlsson S (2010) Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood 115:4689–4698. doi:blood-2009-05-220988

    PubMed  CAS  Google Scholar 

  • Singh AM, Reynolds D, Cliff T, Ohtsuka S, Mattheyses AL, Sun Y, Menendez L, Kulik M, Dalton S (2012) Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation. Cell Stem Cell 10:312–326. doi:S1934-5909(12)00016-1

    PubMed  CAS  Google Scholar 

  • Sitnicka E, Ruscetti FW, Priestley GV, Wolf NS, Bartelmez SH (1996) Transforming growth factor β 1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells. Blood 88:82–88

    PubMed  CAS  Google Scholar 

  • Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA (2008) Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313:107–117. doi:S0012-1606(07)01414-5

    PubMed  CAS  Google Scholar 

  • Stavridis MP, Lunn JS, Collins BJ, Storey KG (2007) A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development 134:2889–2894

    PubMed  CAS  Google Scholar 

  • Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H (2008) Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/β-catenin, Activin/Nodal and BMP signaling. Development 135:2969–2979. doi:dev.021121

    PubMed  CAS  Google Scholar 

  • Suzuki A, Raya A, Kawakami Y, Morita M, Matsui T, Nakashima K, Gage FH, Rodriguez-Esteban C, Izpisua Belmonte JC (2006) Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc Natl Acad Sci USA 103:10294–10299. doi:0506945103

    PubMed  CAS  Google Scholar 

  • Tada S, Era T, Furusawa C, Sakurai H, Nishikawa S, Kinoshita M, Nakao K, Chiba T (2005) Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132:4363–4374. doi:dev.02005

    PubMed  CAS  Google Scholar 

  • Tang QQ, Otto TC, Lane MD (2004) Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA 101:9607–9611. doi:10.1073/pnas.0403100101

    PubMed  CAS  Google Scholar 

  • Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X (2009) TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15:757–765. doi:nm.1979

    PubMed  CAS  Google Scholar 

  • Temple S (2001) The development of neural stem cells. Nature 414:112–117. doi:10.1038/35102174

    PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    PubMed  CAS  Google Scholar 

  • Toyooka Y, Tsunekawa N, Akasu R, Noce T (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 100:11457–11462. doi:10.1073/pnas.1932826100

    PubMed  CAS  Google Scholar 

  • Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128:3609–3621

    PubMed  CAS  Google Scholar 

  • Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004. doi:nature07221

    PubMed  CAS  Google Scholar 

  • Tsuda H, Wada T, Ito Y, Uchida H, Dehari H, Nakamura K, Sasaki K, Kobune M, Yamashita T, Hamada H (2003) Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 7:354–365. doi:S152500160200062X

    PubMed  CAS  Google Scholar 

  • Vallier L, Reynolds D, Pedersen RA (2004) Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol 275:403–421. doi:S0012-1606(04)00587-1

    PubMed  CAS  Google Scholar 

  • Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509. doi:118/19/4495

    PubMed  CAS  Google Scholar 

  • Vallier L, Mendjan S, Brown S, Chng Z, Teo A, Smithers LE, Trotter MW, Cho CH, Martinez A, Rugg-Gunn P, Brons G, Pedersen RA (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136:1339–1349. doi:dev.033951

    PubMed  CAS  Google Scholar 

  • van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260. doi:10.1146/annurev.physiol.010908.163145

    PubMed  Google Scholar 

  • Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL (2008) TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 10:837–848. doi:ncb1748

    PubMed  CAS  Google Scholar 

  • Wang EA, Israel DI, Kelly S, Luxenberg DP (1993) Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 9:57–71

    PubMed  CAS  Google Scholar 

  • Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P, Meng S, Feng J, Miao C, Ding M, Li D, Deng H (2005) Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun 330:934–942. doi:S0006-291X(05)00531-0

    PubMed  CAS  Google Scholar 

  • Watabe T, Miyazono K (2009) Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res 19:103–115. doi:cr2008323

    PubMed  CAS  Google Scholar 

  • Wei W, Qing T, Ye X, Liu H, Zhang D, Yang W, Deng H (2008) Primordial germ cell specification from embryonic stem cells. PLoS One 3:e4013. doi:10.1371/journal.pone.0004013

    PubMed  Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A (1997) Neural induction in Xenopus laevis: evidence for the default model. Curr Opin Neurobiol 7:7–12. doi:S0959-4388(97)80114-6

    PubMed  CAS  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116

    PubMed  CAS  Google Scholar 

  • Wu Z, Zhang W, Chen G, Cheng L, Liao J, Jia N, Gao Y, Dai H, Yuan J, Xiao L (2008) Combinatorial signals of activin/nodal and bone morphogenic protein regulate the early lineage segregation of human embryonic stem cells. J Biol Chem 283:24991–25002. doi:M803893200

    PubMed  CAS  Google Scholar 

  • Xiao L, Yuan X, Sharkis SJ (2006) Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24(6):1476–1486. doi:2005–0299

    PubMed  CAS  Google Scholar 

  • Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19(10):971–974. doi:10.1038/nbt1001-971

    PubMed  CAS  Google Scholar 

  • Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264. doi:10.1038/nbt761

    PubMed  CAS  Google Scholar 

  • Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190. doi:nmeth744

    PubMed  CAS  Google Scholar 

  • Xu RH, Sampsell-Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson JA (2008) NANOG is a direct target of TGFβ/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3:196–206. doi:S1934-5909(08)00335-4

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158. doi:S0092-8674(11)01269-4

    PubMed  CAS  Google Scholar 

  • Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, Su N, Luo Y, Heilshorn SC, Amieva MR, Sangiorgi E, Capecchi MR, Kuo CJ (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci USA 109:466–471. doi:1118857109

    PubMed  CAS  Google Scholar 

  • Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528. doi:nature06894

    PubMed  CAS  Google Scholar 

  • Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 23:1542–1550. doi:nbt1167

    PubMed  CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003a) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    PubMed  CAS  Google Scholar 

  • Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003b) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186

    PubMed  CAS  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    PubMed  CAS  Google Scholar 

  • Yoshida-Koide U, Matsuda T, Saikawa K, Nakanuma Y, Yokota T, Asashima M, Koide H (2004) Involvement of Ras in extraembryonic endoderm differentiation of embryonic stem cells. Biochem Biophys Res Commun 313:475–481

    PubMed  CAS  Google Scholar 

  • Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954. doi:S0092-8674(11)00071-7

    PubMed  CAS  Google Scholar 

  • Yu P, Pan G, Yu J, Thomson JA (2011) FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 8:326–334. doi:S1934-5909(11)00002-6

    PubMed  CAS  Google Scholar 

  • Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen GJ, Rao MS, Freed WJ (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22:925–940. doi:22/6/925

    PubMed  CAS  Google Scholar 

  • Zhang YE (2009) Non-Smad pathways in TGF-β signaling. Cell Res 19:128–139. doi:cr2008328

    PubMed  CAS  Google Scholar 

  • Zhang J, He XC, Tong WG, Johnson T, Wiedemann LM, Mishina Y, Feng JQ, Li L (2006) Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells 24:2826–2839. doi:2005–0544

    PubMed  CAS  Google Scholar 

  • Zhang P, Li J, Tan Z, Wang C, Liu T, Chen L, Yong J, Jiang W, Sun X, Du L, Ding M, Deng H (2008) Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111:1933–1941. doi:blood-2007-02-074120

    PubMed  CAS  Google Scholar 

  • Zhang K, Li L, Huang C, Shen C, Tan F, Xia C, Liu P, Rossant J, Jing N (2010) Distinct functions of BMP4 during different stages of mouse ES cell neural commitment. Development 137:2095–2105

    PubMed  CAS  Google Scholar 

  • Zhao GQ (2003) Consequences of knocking out BMP signaling in the mouse. Genesis 35:43–56. doi:10.1002/gene.10167

    PubMed  CAS  Google Scholar 

  • Zhou J, Su P, Li D, Tsang S, Duan E, Wang F (2010) High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor β superfamily receptors. Stem Cells 28:1741–1750. doi:10.1002/stem.504

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Bing Zhao for critical comments. The work in YGC’s lab was supported by grants from the National Natural Science Foundation of China (30930050, 30921004), and the 973 Program (2006CB943401, 2010CB833706). Work in the DH lab on stem cells was supported by grants from KU Leuven (GOA-11/012), Fund of Scientific Research-Flanders (FWO-V GA.094.11N), PhD grants from the Agency for Innovation by Science and Technology (IWT) and the Interuniversity Attraction Pole Network funding (Belspo IUAP6 and IUAP7 5-year funding cycles). This work was also partially supported by grant BIL-08/10 in the framework of Tsinghua University-KU Leuven Bilateral Scientific Cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Guang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Li, Z., Huylebroeck, D., Chen, YG. (2013). TGF-β Signaling in Stem Cell Fate Determination. In: Moustakas, A., Miyazawa, K. (eds) TGF-β in Human Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54409-8_2

Download citation

Publish with us

Policies and ethics