Skip to main content

The Transforming Growth Factor-Beta (TGF-β) in Liver Fibrosis

  • Chapter
  • First Online:
TGF-β in Human Disease

Abstract

Liver fibrosis is the final consequence of many chronic liver injuries that later develop in cirrhosis and hepatocellular carcinoma (HCC), which are leading causes of morbidity and mortality worldwide. The transforming growth factor-beta (TGF-β) represents a key cytokine that increases in liver in its activated form upon damage and triggers important cellular events during any progression stage of the disease. TGF-β mediates activation of hepatic stellate cells (HSCs) to myofibroblasts and induces cell death and epithelial mesenchymal transition (EMT) of hepatocytes. Both processes may facilitate extracellular matrix (ECM) deposition and scar formation. Regulatory T cells, important negative regulators of inflammation, depend on TGF-β for terminal differentiation, indicating its impact in the inflammatory response. Oxidative stress plays an essential role in mediating liver fibrosis, and recent studies demonstrate that TGF-β contributes to the reactive oxygen species (ROS) production and oxidative damage. Indeed, the active implication of TGF-β signaling in the progression of liver fibrosis makes this cytokine an attractive therapeutic target. In addition to the increasing number of compounds aimed at direct inhibition of the TGF-β pathway, the recent discovery of new downstream molecules with crucial roles in liver fibrosis development, such as NADPH oxidases, is opening the therapeutic perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALK5:

Activin receptor-like kinase 5

CLD:

Chronic liver disease

ECM:

Extracellular matrix

EMT:

Epithelial mesenchymal transition

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HSCs:

Hepatic stellate cells

NASH:

Non-alcoholic steatohepatitis

NOX:

NADPH oxidase

ROS:

Reactive oxygen species

References

  • Abhilash PA, Harikrishnan R, Indira M (2012) Ascorbic acid supplementation down-regulates the alcohol induced oxidative stress, hepatic stellate cell activation, cytotoxicity and mRNA levels of selected fibrotic genes in guinea pigs. Free Radic Res 46:204–213

    PubMed  CAS  Google Scholar 

  • Albright CD, Salganik RI, Craciunescu CN, Mar MH, Zeisel SH (2003) Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor-β1 in immortalized rat hepatocytes. J Cell Biochem 89:254–261

    PubMed  CAS  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    PubMed  CAS  Google Scholar 

  • Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, Barnes JL (2010) NAD(P)H oxidase mediates TGF-β1-induced activation of kidney myofibroblasts. J Am Soc Nephrol 21:93–102

    PubMed  CAS  Google Scholar 

  • Boudreau HE, Emerson SU, Korzeniowska A, Jendrysik MA, Leto TL (2009) Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor β-dependent manner: a new contributor to HCV-induced oxidative stress. J Virol 83:12934–12946

    PubMed  CAS  Google Scholar 

  • Brenner DA (2009) Molecular pathogenesis of liver fibrosis. Trans Am Clin Climatol Assoc 120:361–368

    PubMed  Google Scholar 

  • Caja L, Ortiz C, Bertran E, Murillo MM, Miro-Obradors MJ, Palacios E, Fabregat I (2007) Differential intracellular signalling induced by TGF-β in rat adult hepatocytes and hepatoma cells: implications in liver carcinogenesis. Cell Signal 19:683–694

    PubMed  CAS  Google Scholar 

  • Caja L, Sancho P, Bertran E, Iglesias-Serret D, Gil J, Fabregat I (2009) Overactivation of the MEK/ERK pathway in liver tumor cells confers resistance to TGF-{β}-induced cell death through impairing up-regulation of the NADPH oxidase NOX4. Cancer Res 69:7595–7602

    PubMed  CAS  Google Scholar 

  • Caja L, Bertran E, Campbell J, Fausto N, Fabregat I (2011) The transforming growth factor-β (TGF-β) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol 226:1214–1223

    PubMed  CAS  Google Scholar 

  • Carmona-Cuenca I, Roncero C, Sancho P, Caja L, Fausto N, Fernandez M, Fabregat I (2008) Upregulation of the NADPH oxidase NOX4 by TGF-β in hepatocytes is required for its pro-apoptotic activity. J Hepatol 49:965–976

    PubMed  CAS  Google Scholar 

  • Carr BI, Hayashi I, Branum EL, Moses HL (1986) Inhibition of DNA synthesis in rat hepatocytes by platelet-derived type β transforming growth factor. Cancer Res 46:2330–2334

    PubMed  CAS  Google Scholar 

  • Chen Y, Shi-wen X, Eastwood M, Black CM, Denton CP, Leask A, Abraham DJ (2006) Contribution of activin receptor-like kinase 5 (transforming growth factor β receptor type I) signaling to the fibrotic phenotype of scleroderma fibroblasts. Arthritis Rheum 54:1309–1316

    PubMed  CAS  Google Scholar 

  • Chu AS, Diaz R, Hui JJ, Yanger K, Zong Y, Alpini G, Stanger BZ, Wells RG (2011) Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 53:1685–1695

    PubMed  Google Scholar 

  • Connolly EC, Saunier EF, Quigley D, Luu MT, De Sapio A, Hann B, Yingling JM, Akhurst RJ (2011) Outgrowth of drug-resistant carcinomas expressing markers of tumor aggression after long-term TβRI/II kinase inhibition with LY2109761. Cancer Res 71:2339–2349

    PubMed  CAS  Google Scholar 

  • Constandinou C, Henderson N, Iredale JP (2005) Modeling liver fibrosis in rodents. Methods Mol Med 117:237–250

    PubMed  Google Scholar 

  • Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    PubMed  CAS  Google Scholar 

  • Cui X, Shimizu I, Lu G, Itonaga M, Inoue H, Shono M, Tamaki K, Fukuno H, Ueno H, Ito S (2003) Inhibitory effect of a soluble transforming growth factor β type II receptor on the activation of rat hepatic stellate cells in primary culture. J Hepatol 39:731–737

    PubMed  CAS  Google Scholar 

  • Cui W, Matsuno K, Iwata K, Ibi M, Matsumoto M, Zhang J, Zhu K, Katsuyama M, Torok NJ, Yabe-Nishimura C (2011) NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology 54:949–958

    PubMed  CAS  Google Scholar 

  • de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A, Gellibert F, Huet S (2005) Inhibition of TGF-β signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol 145:166–177

    PubMed  Google Scholar 

  • De Minicis S, Seki E, Paik YH, Osterreicher CH, Kodama Y, Kluwe J, Torozzi L, Miyai K, Benedetti A, Schwabe RF, Brenner DA (2010) Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology 52:1420–1430

    PubMed  Google Scholar 

  • Diesen DL, Kuo PC (2010) Nitric oxide and redox regulation in the liver: Part I. General considerations and redox biology in hepatitis. J Surg Res 162:95–109

    PubMed  CAS  Google Scholar 

  • Dionisio N, Garcia-Mediavilla MV, Sanchez-Campos S, Majano PL, Benedicto I, Rosado JA, Salido GM, Gonzalez-Gallego J (2009) Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol 50:872–882

    PubMed  CAS  Google Scholar 

  • Dooley S, ten Dijke P (2012) TGF-β in progression of liver disease. Cell Tissue Res 347:245–256

    PubMed  CAS  Google Scholar 

  • Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM (2000) Modulation of transforming growth factor β response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 31:1094–1106

    PubMed  CAS  Google Scholar 

  • Dooley S, Delvoux B, Streckert M, Bonzel L, Stopa M, ten Dijke P, Gressner AM (2001) Transforming growth factor β signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. TGFβ signal transduction during transdifferentiation of hepatic stellate cells. FEBS Lett 502:4–10

    PubMed  CAS  Google Scholar 

  • Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, ten Dijke P, Gressner AM (2003) Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 125:178–191

    PubMed  CAS  Google Scholar 

  • Dooley S, Hamzavi J, Ciuclan L, Godoy P, Ilkavets I, Ehnert S, Ueberham E, Gebhardt R, Kanzler S, Geier A, Breitkopf K, Weng H, Mertens PR (2008) Hepatocyte-specific Smad7 expression attenuates TGF-β-mediated fibrogenesis and protects against liver damage. Gastroenterology 135:642–659

    PubMed  CAS  Google Scholar 

  • Ezquerro IJ, Lasarte JJ, Dotor J, Castilla-Cortazar I, Bustos M, Penuelas I, Blanco G, Rodriguez C, Lechuga Mdel C, Greenwel P, Rojkind M, Prieto J, Borras-Cuesta F (2003) A synthetic peptide from transforming growth factor β type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine 22:12–20

    PubMed  CAS  Google Scholar 

  • Fang Y, Han SI, Mitchell C, Gupta S, Studer E, Grant S, Hylemon PB, Dent P (2004) Bile acids induce mitochondrial ROS, which promote activation of receptor tyrosine kinases and signaling pathways in rat hepatocytes. Hepatology 40:961–971

    PubMed  CAS  Google Scholar 

  • Fickert P, Fuchsbichler A, Wagner M, Zollner G, Kaser A, Tilg H, Krause R, Lammert F, Langner C, Zatloukal K, Marschall HU, Denk H, Trauner M (2004) Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 127:261–274

    PubMed  CAS  Google Scholar 

  • Flechsig P, Dadrich M, Bickelhaupt S, Jenne J, Hauser K, Timke C, Peschke P, Hahn EW, Grone HJ, Yingling J, Lahn M, Wirkner U, Huber PE (2012) LY2109761 Attenuates Radiation-Induced Pulmonary Murine Fibrosis via Reversal of TGF-β and BMP-Associated Proinflammatory and Proangiogenic Signals. Clin Cancer Res 18:3616–3627

    PubMed  CAS  Google Scholar 

  • Foo NP, Lin SH, Lee YH, Wu MJ, Wang YJ (2011) alpha-Lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-β. Toxicology 282:39–46

    PubMed  CAS  Google Scholar 

  • Franco DL, Mainez J, Vega S, Sancho P, Murillo MM, de Frutos CA, Del Castillo G, Lopez-Blau C, Fabregat I, Nieto MA (2010) Snail1 suppresses TGF-β-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J Cell Sci 123:3467–3477

    PubMed  CAS  Google Scholar 

  • Franklin CC, Rosenfeld-Franklin ME, White C, Kavanagh TJ, Fausto N (2003) TGFβ1-induced suppression of glutathione antioxidant defenses in hepatocytes: caspase-dependent post-translational and caspase-independent transcriptional regulatory mechanisms. FASEB J 17:1535–1537

    PubMed  CAS  Google Scholar 

  • Fransvea E, Angelotti U, Antonaci S, Giannelli G (2008) Blocking transforming growth factor-β up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 47:1557–1566

    PubMed  CAS  Google Scholar 

  • Friedman SL (2010) Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 7:425–436

    PubMed  Google Scholar 

  • Fu K, Corbley MJ, Sun L, Friedman JE, Shan F, Papadatos JL, Costa D, Lutterodt F, Sweigard H, Bowes S, Choi M, Boriack-Sjodin PA, Arduini RM, Sun D, Newman MN, Zhang X, Mead JN, Chuaqui CE, Cheung HK, Zhang X, Cornebise M, Carter MB, Josiah S, Singh J, Lee WC, Gill A, Ling LE (2008) SM16, an orally active TGF-β type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arterioscler Thromb Vasc Biol 28:665–671

    PubMed  CAS  Google Scholar 

  • Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y, Lonning S, McPherson J, Yingling JM, Biswas S, Mundy GR, Reiss M (2010) Targeting the transforming growth factor-β pathway inhibits human basal-like breast cancer metastasis. Mol Cancer 9:122

    PubMed  Google Scholar 

  • George J, Roulot D, Koteliansky VE, Bissell DM (1999) In vivo inhibition of rat stellate cell activation by soluble transforming growth factor β type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA 96:12719–12724

    PubMed  CAS  Google Scholar 

  • Gotzmann J, Huber H, Thallinger C, Wolschek M, Jansen B, Schulte-Hermann R, Beug H, Mikulits W (2002) Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness. J Cell Sci 115:1189–1202

    PubMed  CAS  Google Scholar 

  • Graf D, Kurz AK, Fischer R, Reinehr R, Haussinger D (2002) Taurolithocholic acid-3 sulfate induces CD95 trafficking and apoptosis in a c-Jun N-terminal kinase-dependent manner. Gastroenterology 122:1411–1427

    PubMed  CAS  Google Scholar 

  • Grehn F, Hollo G, Khaw P, Overton B, Wilson R, Vogel R, Smith Z (2007) Factors affecting the outcome of trabeculectomy: an analysis based on combined data from two phase III studies of an antibody to transforming growth factor β2, CAT-152. Ophthalmology 114:1831–1838

    PubMed  Google Scholar 

  • Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M, Tarocchi M, Abar OT, Huang H, Sninsky JJ, Friedman SL (2009) Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology 49:960–968

    PubMed  CAS  Google Scholar 

  • Hammerich L, Heymann F, Tacke F (2011) Role of IL-17 and Th17 cells in liver diseases. Clin Dev Immunol 2011:345803

    PubMed  Google Scholar 

  • Hasegawa M, Matsushita Y, Horikawa M, Higashi K, Tomigahara Y, Kaneko H, Shirasaki F, Fujimoto M, Takehara K, Sato S (2009) A novel inhibitor of Smad-dependent transcriptional activation suppresses tissue fibrosis in mouse models of systemic sclerosis. Arthritis Rheum 60:3465–3475

    PubMed  CAS  Google Scholar 

  • Hayashi H, Sakai T (2011) Animal models for the study of liver fibrosis: new insights from knockout mouse models. Am J Physiol Gastrointest Liver Physiol 300:G729–G738

    PubMed  CAS  Google Scholar 

  • Hayashi H, Sakai T (2012) Biological Significance of Local TGF-β Activation in Liver Diseases. Front Physiol 3:12

    PubMed  CAS  Google Scholar 

  • Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ, Thannickal VJ (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15:1077–1081

    PubMed  CAS  Google Scholar 

  • Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA (1999) The role of TGFβ1 in initiating hepatic stellate cell activation in vivo. J Hepatol 30:77–87

    PubMed  CAS  Google Scholar 

  • Hermida N, Lopez B, Gonzalez A, Dotor J, Lasarte JJ, Sarobe P, Borras-Cuesta F, Diez J (2009) A synthetic peptide from transforming growth factor-β1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats. Cardiovasc Res 81:601–609

    PubMed  CAS  Google Scholar 

  • Herrera B, Alvarez AM, Sanchez A, Fernandez M, Roncero C, Benito M, Fabregat I (2001) Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (β) in fetal hepatocytes. FASEB J 15:741–751

    PubMed  CAS  Google Scholar 

  • Herrera B, Murillo MM, Alvarez-Barrientos A, Beltran J, Fernandez M, Fabregat I (2004) Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-β in fetal rat hepatocytes. Free Radic Biol Med 36:16–26

    PubMed  CAS  Google Scholar 

  • Higashi K, Tomigahara Y, Shiraki H, Miyata K, Mikami T, Kimura T, Moro T, Inagaki Y, Kaneko H (2011) A novel small compound that promotes nuclear translocation of YB-1 ameliorates experimental hepatic fibrosis in mice. J Biol Chem 286:4485–4492

    PubMed  CAS  Google Scholar 

  • Hill C, Flyvbjerg A, Rasch R, Bak M, Logan A (2001) Transforming growth factor-β2 antibody attenuates fibrosis in the experimental diabetic rat kidney. J Endocrinol 170:647–651

    PubMed  CAS  Google Scholar 

  • Hocher B, Godes M, Olivier J, Weil J, Eschenhagen T, Slowinski T, Neumayer HH, Bauer C, Paul M, Pinto YM (2002) Inhibition of left ventricular fibrosis by tranilast in rats with renovascular hypertension. J Hypertens 20:745–751

    PubMed  Google Scholar 

  • Ikeda H, Inao M, Fujiwara K (1996) Inhibitory effect of tranilast on activation and transforming growth factor β 1 expression in cultured rat stellate cells. Biochem Biophys Res Commun 227:322–327

    PubMed  CAS  Google Scholar 

  • Ikeda R, Ishii K, Hoshikawa Y, Azumi J, Arakaki Y, Yasui T, Matsuura S, Matsumi Y, Kono Y, Mizuta Y, Kurimasa A, Hisatome I, Friedman SL, Kawasaki H, Shiota G (2011) Reactive oxygen species and NADPH oxidase 4 induced by transforming growth factor β1 are the therapeutic targets of polyenylphosphatidylcholine in the suppression of human hepatic stellate cell activation. Inflamm Res 60:597–604

    PubMed  CAS  Google Scholar 

  • Inagaki Y, Kushida M, Higashi K, Itoh J, Higashiyama R, Hong YY, Kawada N, Namikawa K, Kiyama H, Bou-Gharios G, Watanabe T, Okazaki I, Ikeda K (2005) Cell type-specific intervention of transforming growth factor β/Smad signaling suppresses collagen gene expression and hepatic fibrosis in mice. Gastroenterology 129:259–268

    PubMed  CAS  Google Scholar 

  • Jiang JX, Venugopal S, Serizawa N, Chen X, Scott F, Li Y, Adamson R, Devaraj S, Shah V, Gershwin ME, Friedman SL, Torok NJ (2010) Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 139:1375–1384

    PubMed  CAS  Google Scholar 

  • Jiang JX, Chen X, Serizawa N, Szyndralewicz C, Page P, Schroder K, Brandes RP, Devaraj S, Torok NJ (2012) Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic Biol Med 53:289–296

    PubMed  CAS  Google Scholar 

  • Jinnin M, Ihn H, Tamaki K (2006) Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-β1-induced extracellular matrix expression. Mol Pharmacol 69:597–607

    PubMed  CAS  Google Scholar 

  • Jobling MF, Mott JD, Finnegan MT, Jurukovski V, Erickson AC, Walian PJ, Taylor SE, Ledbetter S, Lawrence CM, Rifkin DB, Barcellos-Hoff MH (2006) Isoform-specific activation of latent transforming growth factor β (LTGF-β) by reactive oxygen species. Radiat Res 166:839–848

    PubMed  CAS  Google Scholar 

  • Kagitani S, Ueno H, Hirade S, Takahashi T, Takata M, Inoue H (2004) Tranilast attenuates myocardial fibrosis in association with suppression of monocyte/macrophage infiltration in DOCA/salt hypertensive rats. J Hypertens 22:1007–1015

    PubMed  CAS  Google Scholar 

  • Kaimori A, Potter J, Kaimori JY, Wang C, Mezey E, Koteish A (2007) Transforming growth factor-β1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem 282:22089–22101

    PubMed  CAS  Google Scholar 

  • Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, Schirmacher P, Rose-John S, zum Buschenfelde KH, Blessing M (1999) TGF-β1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol 276:G1059–G1068

    PubMed  CAS  Google Scholar 

  • Kanzler S, Meyer E, Lohse AW, Schirmacher P, Henninger J, Galle PR, Blessing M (2001) Hepatocellular expression of a dominant-negative mutant TGF-β type II receptor accelerates chemically induced hepatocarcinogenesis. Oncogene 20:5015–5024

    PubMed  CAS  Google Scholar 

  • Kelly DJ, Zhang Y, Connelly K, Cox AJ, Martin J, Krum H, Gilbert RE (2007) Tranilast attenuates diastolic dysfunction and structural injury in experimental diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 293:H2860–H2869

    PubMed  CAS  Google Scholar 

  • Khaw P, Grehn F, Hollo G, Overton B, Wilson R, Vogel R, Smith Z (2007) A phase III study of subconjunctival human anti-transforming growth factor β monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy. Ophthalmology 114:1822–1830

    PubMed  Google Scholar 

  • Kim YW, Kim YK, Lee JY, Chang KT, Lee HJ, Kim DK, Sheen YY (2008) Pharmacokinetics and tissue distribution of 3-((5-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)-1H-imidazol-2-yl)methyl)benzamid e; a novel ALK5 inhibitor and a potential anti-fibrosis drug. Xenobiotica 38:325–339

    PubMed  Google Scholar 

  • Kitamura K, Nakamoto Y, Akiyama M, Fujii C, Kondo T, Kobayashi K, Kaneko S, Mukaida N (2002) Pathogenic roles of tumor necrosis factor receptor p55-mediated signals in dimethylnitrosamine-induced murine liver fibrosis. Lab Invest 82:571–583

    PubMed  CAS  Google Scholar 

  • Koike Y, Hatamochi A, Koyano S, Namikawa H, Hamasaki Y, Yamazaki S (2011) Lupus miliaris disseminatus faciei successfully treated with tranilast: report of two cases. J Dermatol 38:588–592

    PubMed  Google Scholar 

  • Kukielka E, Dicker E, Cederbaum AI (1994) Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment. Arch Biochem Biophys 309:377–386

    PubMed  CAS  Google Scholar 

  • Lacher MD, Tiirikainen MI, Saunier EF, Christian C, Anders M, Oft M, Balmain A, Akhurst RJ, Korn WM (2006) Transforming growth factor-β receptor inhibition enhances adenoviral infectability of carcinoma cells via up-regulation of Coxsackie and Adenovirus Receptor in conjunction with reversal of epithelial-mesenchymal transition. Cancer Res 66:1648–1657

    PubMed  CAS  Google Scholar 

  • Lagares D, Garcia-Fernandez RA, Jimenez CL, Magan-Marchal N, Busnadiego O, Lamas S, Rodriguez-Pascual F (2010) Endothelin 1 contributes to the effect of transforming growth factor β1 on wound repair and skin fibrosis. Arthritis Rheum 62:878–889

    PubMed  CAS  Google Scholar 

  • Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA (2001) Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β. J Exp Med 194:809–821

    PubMed  CAS  Google Scholar 

  • Liu RM, Gaston Pravia KA (2010) Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic Biol Med 48:1–15

    PubMed  Google Scholar 

  • Liu M, Suga M, Maclean AA, St George JA, Souza DW, Keshavjee S (2002) Soluble transforming growth factor-β type III receptor gene transfection inhibits fibrous airway obliteration in a rat model of Bronchiolitis obliterans. Am J Respir Crit Care Med 165:419–423

    PubMed  Google Scholar 

  • Lopez-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1:303–314

    PubMed  CAS  Google Scholar 

  • Louis H, Le Moine A, Quertinmont E, Peny MO, Geerts A, Goldman M, Le Moine O, Deviere J (2000) Repeated concanavalin A challenge in mice induces an interleukin 10-producing phenotype and liver fibrosis. Hepatology 31:381–390

    PubMed  CAS  Google Scholar 

  • MacDonald GA, Bridle KR, Ward PJ, Walker NI, Houglum K, George DK, Smith JL, Powell LW, Crawford DH, Ramm GA (2001) Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol 16:599–606

    PubMed  CAS  Google Scholar 

  • Martin J, Kelly DJ, Mifsud SA, Zhang Y, Cox AJ, See F, Krum H, Wilkinson-Berka J, Gilbert RE (2005) Tranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-β. Cardiovasc Res 65:694–701

    PubMed  CAS  Google Scholar 

  • Masamune A, Watanabe T, Kikuta K, Satoh K, Shimosegawa T (2008) NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 294:G99–G108

    PubMed  CAS  Google Scholar 

  • Matsubara T, Tanaka N, Patterson AD, Cho JY, Krausz KW, Gonzalez FJ (2011) Lithocholic acid disrupts phospholipid and sphingolipid homeostasis leading to cholestasis in mice. Hepatology 53:1282–1293

    PubMed  CAS  Google Scholar 

  • Matsuzaki K (2009) Modulation of TGF-β signaling during progression of chronic liver diseases. Front Biosci 14:2923–2934

    PubMed  CAS  Google Scholar 

  • Miyazawa K, Kikuchi S, Fukuyama J, Hamano S, Ujiie A (1995) Inhibition of PDGF- and TGF-β 1-induced collagen synthesis, migration and proliferation by tranilast in vascular smooth muscle cells from spontaneously hypertensive rats. Atherosclerosis 118:213–221

    PubMed  CAS  Google Scholar 

  • Moon JA, Kim HT, Cho IS, Sheen YY, Kim DK (2006) IN-1130, a novel transforming growth factor-β type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int 70:1234–1243

    PubMed  CAS  Google Scholar 

  • Murillo MM, del Castillo G, Sanchez A, Fernandez M, Fabregat I (2005) Involvement of EGF receptor and c-Src in the survival signals induced by TGF-β1 in hepatocytes. Oncogene 24:4580–4587

    PubMed  CAS  Google Scholar 

  • Murillo MM, Carmona-Cuenca I, Del Castillo G, Ortiz C, Roncero C, Sanchez A, Fernandez M, Fabregat I (2007) Activation of NADPH oxidase by transforming growth factor-β in hepatocytes mediates up-regulation of epidermal growth factor receptor ligands through a nuclear factor-κB-dependent mechanism. Biochem J 405:251–259

    PubMed  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  • Nakamuta M, Morizono S, Tsuruta S, Kohjima M, Kotoh K, Enjoji M (2005) Remote delivery and expression of soluble type II TGF-β receptor in muscle prevents hepatic fibrosis in rats. Int J Mol Med 16:59–64

    PubMed  CAS  Google Scholar 

  • Nikolaou K, Tsagaratou A, Eftychi C, Kollias G, Mosialos G, Talianidis I (2012) Inactivation of the deubiquitinase CYLD in hepatocytes causes apoptosis, inflammation, fibrosis, and cancer. Cancer Cell 21:738–750

    PubMed  CAS  Google Scholar 

  • Oberhammer F, Fritsch G, Pavelka M, Froschl G, Tiefenbacher R, Purchio T, Schulte-Hermann R (1992) Induction of apoptosis in cultured hepatocytes and in the regressing liver by transforming growth factor-β 1 occurs without activation of an endonuclease. Toxicol Lett 64–65 Spec No:701-4

    Google Scholar 

  • Ortiz C, Caja L, Bertran E, Gonzalez-Rodriguez A, Valverde AM, Fabregat I, Sancho P (2012) Protein-tyrosine phosphatase 1B (PTP1B) deficiency confers resistance to transforming growth factor-β (TGF-β)-induced suppressor effects in hepatocytes. J Biol Chem 287:15263–15274

    PubMed  CAS  Google Scholar 

  • Oshitani N, Yamagami H, Watanabe K, Higuchi K, Arakawa T (2007) Long-term prospective pilot study with tranilast for the prevention of stricture progression in patients with Crohn’s disease. Gut 56:599–600

    PubMed  Google Scholar 

  • Paik YH, Iwaisako K, Seki E, Inokuchi S, Schnabl B, Osterreicher CH, Kisseleva T, Brenner DA (2011) The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology 53:1730–1741

    PubMed  CAS  Google Scholar 

  • Pawlak K, Zolbach K, Borawski J, Mysliwiec M, Kovalchuk O, Chyczewski L, Pawlak D (2008) Chronic viral hepatitis C, oxidative stress and the coagulation/fibrinolysis system in haemodialysis patients. Thromb Res 123:166–170

    PubMed  CAS  Google Scholar 

  • Perlemuter G, Letteron P, Carnot F, Zavala F, Pessayre D, Nalpas B, Brechot C (2003) Alcohol and hepatitis C virus core protein additively increase lipid peroxidation and synergistically trigger hepatic cytokine expression in a transgenic mouse model. J Hepatol 39:1020–1027

    PubMed  CAS  Google Scholar 

  • Petersen M, Thorikay M, Deckers M, van Dinther M, Grygielko ET, Gellibert F, de Gouville AC, Huet S, ten Dijke P, Laping NJ (2008) Oral administration of GW788388, an inhibitor of TGF-β type I and II receptor kinases, decreases renal fibrosis. Kidney Int 73:705–715

    PubMed  CAS  Google Scholar 

  • Piao S, Choi MJ, Tumurbaatar M, Kim WJ, Jin HR, Shin SH, Tuvshintur B, Yin GN, Song JS, Kwon MH, Lee SJ, Han JY, Kim SJ, Ryu JK, Suh JK (2010) Transforming growth factor (TGF)-β type I receptor kinase (ALK5) inhibitor alleviates profibrotic TGF-β1 responses in fibroblasts derived from Peyronie’s plaque. J Sex Med 7:3385–3395

    PubMed  CAS  Google Scholar 

  • Platten M, Wild-Bode C, Wick W, Leitlein J, Dichgans J, Weller M (2001) N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) inhibits transforming growth factor-β relesase and reduces migration and invasiveness of human malignant glioma cells. Int J Cancer 93:53–61

    PubMed  CAS  Google Scholar 

  • Pociask DA, Sime PJ, Brody AR (2004) Asbestos-derived reactive oxygen species activate TGF-β1. Lab Invest 84:1013–1023

    PubMed  CAS  Google Scholar 

  • Proell V, Carmona-Cuenca I, Murillo MM, Huber H, Fabregat I, Mikulits W (2007) TGF-β dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells. Comp Hepatol 6:1

    PubMed  Google Scholar 

  • Rowe RG, Lin Y, Shimizu-Hirota R, Hanada S, Neilson EG, Greenson JK, Weiss SJ (2011) Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol 31:2392–2403

    PubMed  CAS  Google Scholar 

  • Ryu JK, Piao S, Shin HY, Choi MJ, Zhang LW, Jin HR, Kim WJ, Han JY, Hong SS, Park SH, Lee SJ, Kim IH, Lee CR, Kim DK, Mamura M, Kim SJ, Suh JK (2009) IN-1130, a novel transforming growth factor-β type I receptor kinase (activin receptor-like kinase 5) inhibitor, promotes regression of fibrotic plaque and corrects penile curvature in a rat model of Peyronie’s disease. J Sex Med 6:1284–1296

    PubMed  CAS  Google Scholar 

  • Said E, Said SA, Elkashef WF, Gameil NM, Ammar EM (2012) Tranilast ameliorates impaired hepatic functions in Schistosoma mansoni-infected mice. Inflammopharmacology 20:77–87

    PubMed  CAS  Google Scholar 

  • Sampson N, Koziel R, Zenzmaier C, Bubendorf L, Plas E, Jansen-Durr P, Berger P (2011) ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol Endocrinol 25:503–515

    PubMed  CAS  Google Scholar 

  • Sanchez A, Alvarez AM, Benito M, Fabregat I (1996) Apoptosis induced by transforming growth factor-β in fetal hepatocyte primary cultures:involvement of reactive oxygen intermediates. J Biol Chem 271:7416–7422

    PubMed  CAS  Google Scholar 

  • Sancho P, Fabregat I (2011) The NADPH oxidase inhibitor VAS2870 impairs cell growth and enhances TGF-β-induced apoptosis of liver tumor cells. Biochem Pharmacol 81:917–924

    PubMed  CAS  Google Scholar 

  • Sancho P, Bertran E, Caja L, Carmona-Cuenca I, Murillo MM, Fabregat I (2009) The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-β-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms. Biochim Biophys Acta 1793:253–263

    PubMed  CAS  Google Scholar 

  • Sancho P, Martin-Sanz P, Fabregat I (2011) Reciprocal regulation of NADPH oxidases and the cyclooxygenase-2 pathway. Free Radic Biol Med 51:1789–1798

    PubMed  CAS  Google Scholar 

  • Sancho P, Mainez J, Roncero C, Fernandez-Rodriguez CM, Pinedo F, Huber H, Eferl R, Mikulits W, Fabregat I (2012) NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS One 7:e45285

    PubMed  CAS  Google Scholar 

  • Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA (2001) The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 34:89–100

    PubMed  CAS  Google Scholar 

  • Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szyndralewiez C, Page P, Kennedy CR, Burns KD, Touyz RM, Hebert RL (2010) Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney:implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299:F1348–F1358

    PubMed  CAS  Google Scholar 

  • Seki S, Kitada T, Sakaguchi H (2005) Clinicopathological significance of oxidative cellular damage in non-alcoholic fatty liver diseases. Hepatol Res 33:132–134

    PubMed  CAS  Google Scholar 

  • Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF (2007) TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med 13:1324–1332

    PubMed  CAS  Google Scholar 

  • Sies H, Cadenas E (1985) Oxidative stress:damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311:617–631

    PubMed  CAS  Google Scholar 

  • Sullivan BP, Weinreb PH, Violette SM, Luyendyk JP (2010) The coagulation system contributes to αVβ6 integrin expression and liver fibrosis induced by cholestasis. Am J Pathol 177:2837–2849

    PubMed  CAS  Google Scholar 

  • Tan SM, Zhang Y, Connelly KA, Gilbert RE, Kelly DJ (2010) Targeted inhibition of activin receptor-like kinase 5 signaling attenuates cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 298:H1415–H1425

    PubMed  CAS  Google Scholar 

  • Taura K, Miura K, Iwaisako K, Osterreicher CH, Kodama Y, Penz-Osterreicher M, Brenner DA (2010) Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 51:1027–1036

    PubMed  Google Scholar 

  • Teratani T, Tomita K, Suzuki T, Oshikawa T, Yokoyama H, Shimamura K, Tominaga S, Hiroi S, Irie R, Okada Y, Kurihara C, Ebinuma H, Saito H, Hokari R, Sugiyama K, Kanai T, Miura S, Hibi T (2012) A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142:152–164

    PubMed  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    PubMed  CAS  Google Scholar 

  • Ueberham E, Low R, Ueberham U, Schonig K, Bujard H, Gebhardt R (2003) Conditional tetracycline-regulated expression of TGF-β1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology 37:1067–1078

    PubMed  CAS  Google Scholar 

  • Ueno H, Sakamoto T, Nakamura T, Qi Z, Astuchi N, Takeshita A, Shimizu K, Ohashi H (2000) A soluble transforming growth factor β receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Gene Ther 11:33–42

    PubMed  CAS  Google Scholar 

  • Uno M, Kurita S, Misu H, Ando H, Ota T, Matsuzawa-Nagata N, Kita Y, Nabemoto S, Akahori H, Zen Y, Nakanuma Y, Kaneko S, Takamura T (2008) Tranilast, an antifibrogenic agent, ameliorates a dietary rat model of nonalcoholic steatohepatitis. Hepatology 48:109–118

    PubMed  CAS  Google Scholar 

  • Valdes F, Alvarez AM, Locascio A, Vega S, Herrera B, Fernandez M, Benito M, Nieto MA, Fabregat I (2002) The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor β in fetal rat hepatocytes. Mol Cancer Res 1:68–78

    PubMed  CAS  Google Scholar 

  • Valdes F, Murillo MM, Valverde AM, Herrera B, Sanchez A, Benito M, Fernandez M, Fabregat I (2004) Transforming growth factor-β activates both pro-apoptotic and survival signals in fetal rat hepatocytes. Exp Cell Res 292:209–218

    PubMed  CAS  Google Scholar 

  • Wang L, Clutter S, Benincosa J, Fortney J, Gibson LF (2005) Activation of transforming growth factor-β1/p38/Smad3 signaling in stromal cells requires reactive oxygen species-mediated MMP-2 activity during bone marrow damage. Stem Cells 23:1122–1134

    PubMed  CAS  Google Scholar 

  • Wells RG (2011) The epithelial-to-mesenchymal transition in liver fibrosis:here today, gone tomorrow? Hepatology 51:737–740

    Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    PubMed  CAS  Google Scholar 

  • Wynn TA, Barron L (2010) Macrophages:master regulators of inflammation and fibrosis. Semin Liver Dis 30:245–257

    PubMed  CAS  Google Scholar 

  • Yadav D, Hertan HI, Schweitzer P, Norkus EP, Pitchumoni CS (2002) Serum and liver micronutrient antioxidants and serum oxidative stress in patients with chronic hepatitis C. Am J Gastroenterol 97:2634–2639

    PubMed  CAS  Google Scholar 

  • Yao H, Pan J, Qian Y, Pei Z, Bader A, Brockmeyer NH, Altmeyer P, Zhang L (2010) Enhanced effect of soluble transforming growth factor-β receptor II and IFN-γ fusion protein in reversing hepatic fibrosis. Eur J Med Res 15:152–161

    PubMed  CAS  Google Scholar 

  • Yata Y, Gotwals P, Koteliansky V, Rockey DC (2002) Dose-dependent inhibition of hepatic fibrosis in mice by a TGF-β soluble receptor:implications for antifibrotic therapy. Hepatology 35:1022–1030

    PubMed  CAS  Google Scholar 

  • Yoshida K, Matsuzaki K (2012) Differential regulation of TGF-β/Smad signaling in hepatic stellate cells between acute and chronic liver injuries. Front Physiol 3:53

    PubMed  CAS  Google Scholar 

  • Yoshida K, Matsuzaki K, Mori S, Tahashi Y, Yamagata H, Furukawa F, Seki T, Nishizawa M, Fujisawa J, Okazaki K (2005) Transforming growth factor-β and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol 166:1029–1039

    PubMed  CAS  Google Scholar 

  • Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282:23337–23347

    PubMed  CAS  Google Scholar 

  • Zhang B, Halder SK, Kashikar ND, Cho YJ, Datta A, Gorden DL, Datta PK (2010) Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology 138:969–980

    PubMed  CAS  Google Scholar 

  • Zhang M, Kleber S, Rohrich M, Timke C, Han N, Tuettenberg J, Martin-Villalba A, Debus J, Peschke P, Wirkner U, Lahn M, Huber PE (2011) Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:7155–7167

    PubMed  CAS  Google Scholar 

  • Zhu H, Jia Z, Misra H, Li YR (2012) Oxidative stress and redox signaling mechanisms of alcoholic liver disease:updated experimental and clinical evidence. J Dig Dis 13:133–142

    PubMed  Google Scholar 

  • Zhuge J, Cederbaum AI (2006) Increased toxicity by transforming growth factor-β 1 in liver cells overexpressing CYP2E1. Free Radic Biol Med 41:1100–1112

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Fabregat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Fabregat, I., Sancho, P. (2013). The Transforming Growth Factor-Beta (TGF-β) in Liver Fibrosis. In: Moustakas, A., Miyazawa, K. (eds) TGF-β in Human Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54409-8_11

Download citation

Publish with us

Policies and ethics