Skip to main content

Modelling a Landslide Probability Through Time as a Basis for the Landslide Hazard Forecast System

  • Chapter
  • First Online:
GIS Landslide

Abstract

In the past 20 years, intense short- and long-duration rainfall has triggered numerous shallow landslides worldwide, caused extensive material damage to buildings, infrastructure, and roads, and unfortunately also caused loss of human life. Slovenia was no exception in this regard. But these landslide-related problems could be identified and minimised if the knowledge of the landslide occurrence would be upgraded with the more in-depth knowledge of the relationship between the triggering factors (rainfalls) and landslides. In the frame of the national project Masprem, we aim to develop an automated, online tool for predicting landslide hazard forecast at the national level. This tool will provide an early warning system for landslide events in Slovenia, a regional country that is highly vulnerable to extreme meteorological events and to landslides. A system for landslide hazard forecast will be based on the real-time rainfall data, rainfall thresholds for landslide triggering, and the landslide susceptibility map. The proposed system will inform inhabitants of an increased landslide hazard as a consequence of heavy precipitation that would exceed the landslide triggering values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265

    Article  Google Scholar 

  • ARSO Ministry for Environment and Spatial Planning (2012) Environmental Agency of the Republic of Slovenia. http://meteo.arso.gov.si/met/en/app/webmet/. Accessed 20 June 2012

  • Bubnová RG, Hello P, Béenard P, Geleyn JF (1995) Integration of the fully elastic equations cast in the hydrostatic pressure terrain following coordinate in the framework of the ALADIN NWP system. Mon Wea Rev 123:515–535

    Article  Google Scholar 

  • Buchanan P, Savigny KW (1990) Factors controlling debris avalanche initiation. Can Geotech J 27:659–667

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann A 62:23–27. doi:10.2307/520449

    Article  Google Scholar 

  • CATHALAC (2012) Water centre for the humid tropics of Latin America and the Caribbean. http://portalgis.cathalac.org/cathalac/maps/. Accessed 25 Aug 2012

  • Ceglar A, Črepinšek Z, Zupanc V, Kajfež-Bogataj L (2008) A Comparative study of rainfall erosivity for eastern and western Slovenia. Acta Agric Slov 91(2):331–341

    Article  Google Scholar 

  • Chleborad AF (2003) Preliminary evaluation of a precipitation threshold for anticipating the occurrence of landslides in the Seattle, Washington, Area, US Geological Survey Open-File Report 03-463

    Google Scholar 

  • Crosta G (1998) Rationalization of rainfall threshold: an aid to landslide hazard evaluation. Environ Geol 35:131–145

    Article  Google Scholar 

  • Crozier MJ (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf Proc Land 24:825–833

    Article  Google Scholar 

  • Crozier MJ, Eyles RJ (1980) Assessing the probability of rapid mass movement. In: Technical Groups (eds) Proceedings of 3rd Australia-New Zealand Conference on Geomechanics, vol 6. New Zealand Institution of Engineers, Wellington, pp 247–251

    Google Scholar 

  • Fukuzono T, Moriwaki H, Inokuchi T, Maki M, Iwanami K, Misumi R, Takami S, Shikoku T (2004) Landslide disaster prediction support system based on Web GIS. http://gisws.media.osaka-cu.ac.jp/gisideas04/viewpaper.php?id=40

  • García-Ruiz JM, Martí-Bono C, Lorente A, Beguería S (2003) Geomorphological consequences of frequent and infrequent rainfall and hydrological events in Pyrenees Mountains of Spain. Mitig Adapt Strategies Glob Chang 7:303–320

    Article  Google Scholar 

  • Glade T (1998) Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Env Geol 35(2):160–174

    Article  Google Scholar 

  • Glade T, Crozier MJ, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical ‘‘Antecedent Daily Rainfall Model’’. Pure Appl Geophys 157(6/8):1059–1079. doi:10.1007/s000240050017

    Article  Google Scholar 

  • Heyerdahl H, Harbitz CB, Domaas U, Sandersen F, Tronstad K, Nowacki F, Engen A, Kjekstad O, De´voli G, Buezo SG, Diaz MR, HernandezW (2003) Rainfall induced lahars in volcanic debris in Nicaragua and El Salvador: practical mitigation. In: Proceedings of international conference on fast slope movements—prediction and prevention for risk mitigation, IC-FSM2003. Patron Pub, Naples, pp 275–282

    Google Scholar 

  • IDD (2009) The international disaster database—http://www.emdat.be/advanced-search. Accessed 3 Sept 2012

  • Jemec Auflič M, Komac M (2011) Rainfall patterns for shallow landsliding in perialpine Slovenia. Nat Hazards. doi: 10.1007/s11069-011-9882-9

  • Keefer DK, Wilson RC, Mark RK, Brabb EE, Brown WM III, Ellen SD, Harp EL, Wieczorek GF, Alger CS, Zatkin RS (1987) Real-time landslide warning during heavy rainfall: Science 238:921–925

    Google Scholar 

  • Kim SK, Hong WP, Kim YM (1992) Prediction of rainfall-triggered landslides in Korea. In: Bell DH (ed) Landslides. Proc. of the sixth Int. Symp. on landslides, vol 2. Christchurch, Balkema, Rotterdam, pp 989–994

    Google Scholar 

  • Komac M (2005) Rainstorms as a landslide-triggering factor in Slovenia. Geologija 48(2):263–279

    Article  Google Scholar 

  • Komac M (2012) Regional landslide susceptibility model using the Monte Carlo approach—the case of Slovenia. Geol Q 56(1):41–54

    Google Scholar 

  • Komac M, Ribičič M (2006) Landslide susceptibility map of Slovenia at scale 1:250.000. Geologija 49(2):295–309

    Google Scholar 

  • Mercogliano P, Schiano P, Picarelli L, Olivares L, Catani F, Tofani V, Segoni S, Rossi G (2010) Short term weather forecasting for shallow landslide prediction. In: Malet JP, Glade T, Casagli N (eds) Int. Conf. Mountain Risks: Bringing Science to Society, Firenze, pp 525–530

    Google Scholar 

  • Ortigao B (2000) Rio‐watch: the Rio de Janeiro landslide watch. MonoSys Guide to Monitoring Quarter 1 2000. http://www.terratek.com.br/downloads/Geotechnical%20Engineering%20papers%20English/2000%20Ortigao%20on%20Landslide%20Watch%20Guide%20to%20Monitoring.pdf

  • Pasuto A, Silvano S (1998) Rainfall as a triggering factor of shallow mass movements. A case study in the Dolomites, Italy. Environ Geol 35(2–3):184–189

    Google Scholar 

  • Pristov N, Cedilnik J, Jerman J, Strajnar B (2012) Priprava numerične meteorološke napovedi ALADIN-SI. Vetrnica, pp 17–23

    Google Scholar 

  • Schmidt J, Turek G, Clark MP, Uddstrom M, Dymond JR (2008) Probabilistic forecasting of shallow, rainfall-triggered landslides. Nat Hazards Earth Syst Sci 8:349–357

    Article  Google Scholar 

  • Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35(2–3):124–130

    Article  Google Scholar 

  • White ID, Mottershead DN, Harrison J (1996) Environmental Systems, 2nd edn. Chapman & Hall, London, p 616

    Book  Google Scholar 

  • Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Geol Soc Am, Rev Eng Geol 7:93–104

    Article  Google Scholar 

  • Wilson RC (2000) Climatic variations in rainfall thresholds for debris-flows activity. In: Claps P, Siccardi F (eds) Proceedings 1st Plinius conference on mediterranean storms. Maratea, pp 415–424

    Google Scholar 

  • Xiaoping L, Junling X, Hesheng L, Gongxian W (1996) Recent development of time prediction for landslide in China. In: Senneset (ed) Landslides. Balkema, Rotterdam

    Google Scholar 

  • Zezere JL, Trigo RM, Trig IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5:331–344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Komac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Komac, M., Auflič, M.J. (2017). Modelling a Landslide Probability Through Time as a Basis for the Landslide Hazard Forecast System. In: Yamagishi, H., Bhandary, N. (eds) GIS Landslide. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54391-6_4

Download citation

Publish with us

Policies and ethics