Skip to main content

Semaphorins in Bone Homeostasis

  • Chapter
Semaphorins

Abstract

Intercellular communication between cells within bone is essential for the regulation of bone homeostasis. Growing evidence reveals that semaphorins have crucial roles in this process, including osteoclastic bone resorption and osteoblastic bone formation. Semaphorin 4D (Sema4D), derived from osteoclasts, has a potent inhibitory effect on osteoblast differentiation without hampering osteoclastic bone resorption. Sema3A, which is highly expressed in osteoblast lineage cells, maintains bone homeostasis by simultaneously inhibiting osteoclast differentiation and promoting osteoblast differentiation. Sema3A also has a role in the regulation of innervation, indicating the importance of future studies on the interactions among bone cells and neurons. Other semaphorins and their receptors have also been implicated in bone metabolism. These studies provide a scientific basis for future therapeutic approaches to bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192

    Article  CAS  PubMed  Google Scholar 

  • Cariboni A, Davidson K, Rakic S et al (2011) Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Hum Mol Genet 20:336–344

    Article  CAS  PubMed  Google Scholar 

  • Casazza A, Laoui D, Wenes M et al (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24:695–709

    Article  CAS  PubMed  Google Scholar 

  • Crane JL, Cao X (2014) Function of matrix IGF-1 in coupling bone resorption and formation. J Mol Med (Berl) 92:107–115

    Article  CAS  Google Scholar 

  • Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell and more. Endocr Rev 34(5):658–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delorme G, Saltel F, Bonnelye E et al (2005) Expression and function of semaphorin 7A in bone cells. Biol Cell 97:589–597

    Article  CAS  PubMed  Google Scholar 

  • DiGirolamo DJ, Clemens TL, Kousteni S (2012) The skeleton as an endocrine organ. Nat Rev Rheumatol 8:674–683

    Google Scholar 

  • Dirckx N, Van Hul M, Maes C (2013) Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C Embryo Today 99:170–191

    CAS  PubMed  Google Scholar 

  • Elefteriou F (2013) A functional role of sensory nerves in the control of bone remodeling. IBMS Bonekey 10:1–2

    Article  Google Scholar 

  • Fukuda T, Takeda S, Xu R et al (2013) Sema3A regulates bone-mass accrual through sensory innervations. Nature (Lond) 497:490–493

    Article  CAS  Google Scholar 

  • Fukumoto S, Martin TJ (2009) Bone as an endocrine organ. Trends Endocrinol Metab 20:230–236

    Article  CAS  PubMed  Google Scholar 

  • Giacobini P, Parkash J, Campagne C et al (2014) Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A. PLoS Biol 12:e1001808

    Article  PubMed Central  PubMed  Google Scholar 

  • Gu C, Giraudo E (2013) The role of semaphorins and their receptors in vascular development and cancer. Exp Cell Res 319:1306–1316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashi M, Nakashima T, Taniguchi M et al (2012) Osteoprotection by semaphorin 3A. Nature (Lond) 485:69–74

    Article  CAS  Google Scholar 

  • Henriksen K, Bollerslev J, Everts V, Karsdal MA (2011) Osteoclast activity and subtypes as a function of physiology and pathology-implications for future treatments of osteoporosis. Endocr Rev 32:31–63

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K, Zweier M, Sticht H et al (2013) Biallelic SEMA3A defects cause a novel type of syndromic short stature. Am J Med Genet A 161:2880–2889

    Article  CAS  Google Scholar 

  • Hughes A, Kleine-Albers J, Helfrich MH et al (2012) A class III semaphorin (Sema3e) inhibits mouse osteoblast migration and decreases osteoclast formation in vitro. Calcif Tissue Int 90:151–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang J-Y, Lee J-Y, Park M-H et al (2006) Association of PLXNA2 polymorphisms with vertebral fracture risk and bone mineral density in postmenopausal Korean population. Osteoporos Int 17:1592–1601

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Kumanogoh A (2013) Semaphorins in bone development, homeostasis, and disease. Semin Cell Dev Biol 24:163–171

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Mödder UI, Khosla S, Rosen CJ (2011) Emerging therapeutic opportunities for skeletal restoration. Nat Rev Drug Discov 10:141–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koga T, Inui M, Inoue K et al (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature (Lond) 428:758–763

    Google Scholar 

  • Kumanogoh A, Kikutani H (2013) Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat Rev Immunol 13:802–814

    Article  PubMed  Google Scholar 

  • Lewiecki EM (2011) New targets for intervention in the treatment of postmenopausal osteoporosis. Nat Rev Rheumatol 7:631–638

    Article  CAS  PubMed  Google Scholar 

  • Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    CAS  PubMed  Google Scholar 

  • Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ (2012) Update on Wnt signaling in bone cell biology and bone disease. Gene (Amst) 492:1–18

    Article  CAS  Google Scholar 

  • Nakashima T, Hayashi M, Takayanagi H (2012) New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab 23:582–590

    Article  CAS  PubMed  Google Scholar 

  • Negishi-Koga T, Takayanagi H (2012) Bone cell communication factors and semaphorins. Bonekey Rep 1:183

    Article  PubMed Central  PubMed  Google Scholar 

  • Negishi-Koga T, Shinohara M, Komatsu N et al (2011) Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17:1473–1480

    Article  CAS  PubMed  Google Scholar 

  • O’Brien C, Nakashima T, Takayanagi H (2013) Osteocyte control of osteoclastogenesis. Bone (NY) 54:258–263

    Article  Google Scholar 

  • Oh J-E, Kim HJ, Kim W-S et al (2012) PlexinA2 mediates osteoblast differentiation via regulation of Runx2. J Bone Miner Res 27:552–562

    Article  CAS  PubMed  Google Scholar 

  • Pasterkamp RJ (2012) Getting neural circuits into shape with semaphorins. Nat Rev Neurosci 13:605–618

    Article  CAS  PubMed  Google Scholar 

  • Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seeman E, Delmas PD (2006) Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  • Sims N, Martin TJ (2014) Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep 3:481

    PubMed Central  PubMed  Google Scholar 

  • Sobacchi C, Schulz A, Coxon FP et al (2013) Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9:522–536

    Article  CAS  PubMed  Google Scholar 

  • Sutton ALM, Zhang X, Dowd DR et al (2008) Semaphorin 3B is a 1,25-dihydroxyvitamin D3-induced gene in osteoblasts that promotes osteoclastogenesis and induces osteopenia in mice. Mol Endocrinol 22:1370–1381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takamatsu H, Takegahara N, Nakagawa Y et al (2010) Semaphorins guide the entry of dendritic cells into the lymphatics by activating myosin II. Nat Immunol 11:594–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304

    Article  CAS  PubMed  Google Scholar 

  • Takegahara N, Takamatsu H, Toyofuku T et al (2006) Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat Cell Biol 8:615–622

    Article  CAS  PubMed  Google Scholar 

  • Takegahara N, Kang S, Nojima S et al (2010) Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J 24:4782–4792

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Miyazaki T, Fukuda A et al (2006) Molecular mechanism of the life and death of the osteoclast. Ann N Y Acad Sci 1068:180–186

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum SL (2011) The osteoclast and its unique cytoskeleton. Ann N Y Acad Sci 1240:14–17

    Article  CAS  PubMed  Google Scholar 

  • Toyofuku T, Yoshida J, Sugimoto T et al (2005) FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat Neurosci 8:1712–1719

    Article  CAS  PubMed  Google Scholar 

  • Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292

    Article  CAS  PubMed  Google Scholar 

  • Verlinden L, Kriebitzsch C, Beullens I et al (2013) Nrp2 deficiency leads to trabecular bone loss and is accompanied by enhanced osteoclast and reduced osteoblast numbers. Bone (NY) 55:465–475

    Article  CAS  Google Scholar 

  • Wu X, Tu X, Joeng KS et al (2008) Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 133:340–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takayanagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hayashi, M., Nakashima, T., Takayanagi, H. (2015). Semaphorins in Bone Homeostasis. In: Kumanogoh, A. (eds) Semaphorins. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54385-5_8

Download citation

Publish with us

Policies and ethics