Skip to main content

Assessment of Ventricular-Vascular Function by Echocardiography

  • Chapter
  • First Online:
Congenital Heart Disease

Abstract

Reliable assessment of ventricular function is an essential for management of patients with heart disease. Noninvasive echocardiographic evaluation is indispensable for repeated assessment of ventricular function in the clinical setting. Alterations of left and right ventricular geometry and loading conditions are the property of congenital heart disease; therefore, quantitative assessment of ventricular function is technically challenging. Systolic ventricular function is pump activity for the generation of an adequate cardiac output with filling pressure as low as possible. A wide variety of different echocardiographic parameters and indices are developed for the assessment of systolic ventricular function; however, no single parameter adequately provides all the necessary information. One should integrate information from different parameters to comprehensively describe systolic function. Echocardiographic assessment of diastolic function is based on Doppler method of mitral inflow and the pulmonary veins with supplemental assessment by tissue Doppler, strain, and strain rate. Although several indices are available, no single indices adequately evaluate diastolic function. Therefore, a comprehensive examination is mandatory as well as in systolic ventricular function. This chapter will discuss traditional and newer echocardiographic techniques for the evaluation of ventricular function and, in addition, vascular function in patients with congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lang RM et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463

    PubMed  Google Scholar 

  2. Cowburn PJ et al (1998) Risk stratification in chronic heart failure. Eur Heart J 19(5):696–710

    CAS  PubMed  Google Scholar 

  3. Madsen BK et al (1994) Chronic congestive heart failure. Description and survival of 190 consecutive patients with a diagnosis of chronic congestive heart failure based on clinical signs and symptoms. Eur Heart J 15(3):303–310

    CAS  PubMed  Google Scholar 

  4. Schiller NB, Foster E (1996) Analysis of left ventricular systolic function. Heart 75(6 Suppl 2):17–26

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Igarashi H et al (1994) Left ventricular contractile state in preterm infants: relation between wall stress and velocity of circumferential fiber shortening. Am Heart J 127(5):1336–1340

    CAS  PubMed  Google Scholar 

  6. Franklin RC et al (1990) Normal values for noninvasive estimation of left ventricular contractile state and afterload in children. Am J Cardiol 65(7):505–510

    CAS  PubMed  Google Scholar 

  7. Rowland DG, Gutgesell HP (1995) Noninvasive assessment of myocardial contractility, preload, and afterload in healthy newborn infants. Am J Cardiol 75(12):818–821

    CAS  PubMed  Google Scholar 

  8. Colan SD, Borow KM, Neumann A (1984) Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load-independent index of myocardial contractility. J Am Coll Cardiol 4(4):715–724

    CAS  PubMed  Google Scholar 

  9. Colan SD et al (1992) Developmental modulation of myocardial mechanics: age- and growth-related alterations in afterload and contractility. J Am Coll Cardiol 19(3):619–629

    CAS  PubMed  Google Scholar 

  10. Toyono M et al (1998) Maturational changes in left ventricular contractile state. Int J Cardiol 64(3):247–252

    CAS  PubMed  Google Scholar 

  11. Rhodes J et al (1993) A new noninvasive method for the estimation of peak dP/dt. Circulation 88(6):2693–2699

    CAS  PubMed  Google Scholar 

  12. Bargiggia GS et al (1989) A new method for estimating left ventricular dP/dt by continuous wave Doppler-echocardiography. Validation studies at cardiac catheterization. Circulation 80(5):1287–1292

    CAS  PubMed  Google Scholar 

  13. Tei C et al (1995) New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy. J Cardiol 26(6):357–366

    CAS  PubMed  Google Scholar 

  14. Eidem BW et al (1998) Nongeometric quantitative assessment of right and left ventricular function: myocardial performance index in normal children and patients with Ebstein anomaly. J Am Soc Echocardiogr 11(9):849–856

    CAS  PubMed  Google Scholar 

  15. Hernandez-Andrade E et al (2009) Contribution of the myocardial performance index and aortic isthmus blood flow index to predicting mortality in preterm growth-restricted fetuses. Ultrasound Obstet Gynecol 34(4):430–436

    CAS  PubMed  Google Scholar 

  16. Dujardin KS et al (1998) Prognostic value of a Doppler index combining systolic and diastolic performance in idiopathic-dilated cardiomyopathy. Am J Cardiol 82(9):1071–1076

    CAS  PubMed  Google Scholar 

  17. Tei C et al (1996) Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J Am Coll Cardiol 28(3):658–664

    CAS  PubMed  Google Scholar 

  18. Yeo TC et al (1998) Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. Am J Cardiol 81(9):1157–1161

    CAS  PubMed  Google Scholar 

  19. Ikemba CM et al (2004) Myocardial performance index with sevoflurane-pancuronium versus fentanyl-midazolam-pancuronium in infants with a functional single ventricle. Anesthesiology 101(6):1298–1305

    CAS  PubMed  Google Scholar 

  20. Perlowski AA et al (2007) Relation of brain natriuretic peptide to myocardial performance index in adults with congenital heart disease. Am J Cardiol 100(1):110–114

    CAS  PubMed  Google Scholar 

  21. Harada K et al (2001) Assessment of global left ventricular function by tissue Doppler imaging. Am J Cardiol 88(8):927–932

    CAS  PubMed  Google Scholar 

  22. Haque A et al (2002) Effects of valve dysfunction on Doppler Tei index. J Am Soc Echocardiogr 15(9):877–883

    PubMed  Google Scholar 

  23. Nagueh SF et al (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30(6):1527–1533

    CAS  PubMed  Google Scholar 

  24. Eidem BW et al (2004) Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr 17(3):212–221

    PubMed  Google Scholar 

  25. Pai RG et al (1991) Usefulness of systolic excursion of the mitral annulus as an index of left ventricular systolic function. Am J Cardiol 67(2):222–224

    CAS  PubMed  Google Scholar 

  26. Nikitin NP et al (2006) Prognostic value of systolic mitral annular velocity measured with Doppler tissue imaging in patients with chronic heart failure caused by left ventricular systolic dysfunction. Heart 92(6):775–779

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Fukuda K et al (1998) Regional left ventricular wall motion abnormalities in myocardial infarction and mitral annular descent velocities studied with pulsed tissue Doppler imaging. J Am Soc Echocardiogr 11(9):841–848

    CAS  PubMed  Google Scholar 

  28. McMahon CJ et al (2004) Echocardiographic predictors of adverse clinical events in children with dilated cardiomyopathy: a prospective clinical study. Heart 90(8):908–915

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Mishiro Y et al (1999) Evaluation of left ventricular contraction abnormalities in patients with dilated cardiomyopathy with the use of pulsed tissue Doppler imaging. J Am Soc Echocardiogr 12(11):913–920

    CAS  PubMed  Google Scholar 

  30. Bruch C et al (2004) Tissue Doppler imaging in patients with moderate to severe aortic valve stenosis: clinical usefulness and diagnostic accuracy. Am Heart J 148(4):696–702

    PubMed  Google Scholar 

  31. Bax JJ et al (2003) Usefulness of myocardial tissue Doppler echocardiography to evaluate left ventricular dyssynchrony before and after biventricular pacing in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 91(1):94–97

    PubMed  Google Scholar 

  32. Vogel M et al (2003) Noninvasive assessment of left ventricular force-frequency relationships using tissue Doppler-derived isovolumic acceleration: validation in an animal model. Circulation 107(12):1647–1652

    PubMed  Google Scholar 

  33. Lyseggen E et al (2005) Myocardial acceleration during isovolumic contraction: relationship to contractility. Circulation 111(11):1362–1369

    PubMed  Google Scholar 

  34. Mele D et al (2004) Improved recognition of dysfunctioning myocardial segments by longitudinal strain rate versus velocity in patients with myocardial infarction. J Am Soc Echocardiogr 17(4):313–321

    PubMed  Google Scholar 

  35. Urheim S et al (2000) Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 102(10):1158–1164

    CAS  PubMed  Google Scholar 

  36. Heimdal A et al (1998) Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr 11(11):1013–1019

    CAS  PubMed  Google Scholar 

  37. Kowalski M et al (2001) Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. Ultrasound Med Biol 27(8):1087–1097

    CAS  PubMed  Google Scholar 

  38. Weidemann F et al (2002) Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J Am Soc Echocardiogr 15(1):20–28

    PubMed  Google Scholar 

  39. D’Andrea A et al (2009) Effects of global longitudinal strain and total scar burden on response to cardiac resynchronization therapy in patients with ischaemic dilated cardiomyopathy. Eur J Heart Fail 11(1):58–67

    PubMed  Google Scholar 

  40. Breithardt OA et al (2003) Cardiac resynchronization therapy can reverse abnormal myocardial strain distribution in patients with heart failure and left bundle branch block. J Am Coll Cardiol 42(3):486–494

    PubMed  Google Scholar 

  41. Pislaru C et al (2002) Higher myocardial strain rates during isovolumic relaxation phase than during ejection characterize acutely ischemic myocardium. J Am Coll Cardiol 40(8):1487–1494

    PubMed  Google Scholar 

  42. Ito T et al (2006) Regional postsystolic shortening in patients with hypertrophic cardiomyopathy: its incidence and characteristics assessed by strain imaging. J Am Soc Echocardiogr 19(8):987–993

    PubMed  Google Scholar 

  43. Ganame J et al (2007) Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations. Eur Heart J 28(23):2886–2894

    PubMed  Google Scholar 

  44. Boettler P et al (2005) Heart rate effects on strain and strain rate in healthy children. J Am Soc Echocardiogr 18(11):1121–1130

    PubMed  Google Scholar 

  45. Takigiku K et al (2012) Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study. Circ J 76(11):2623–2632

    PubMed  Google Scholar 

  46. Jenkins C et al (2004) Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 44(4):878–886

    PubMed  Google Scholar 

  47. Laser KT et al (2010) Left ventricular volumetry in healthy children and adolescents: comparison of two different real-time three-dimensional matrix transducers with cardiovascular magnetic resonance. Eur J Echocardiogr 11(2):138–148

    PubMed  Google Scholar 

  48. Jenkins C, Haluska B, Marwick TH (2009) Assessment of temporal heterogeneity and regional motion to identify wall motion abnormalities using treadmill exercise stress three-dimensional echocardiography. J Am Soc Echocardiogr 22(3):268–275

    PubMed  Google Scholar 

  49. Mantero A et al (1995) Left ventricular diastolic parameters in 288 normal subjects from 20 to 80 years old. Eur Heart J 16(1):94–105

    CAS  PubMed  Google Scholar 

  50. Schmitz L et al (1998) Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation. J Am Coll Cardiol 32(5):1441–1448

    CAS  PubMed  Google Scholar 

  51. Ayabakan C, Ozkutlu S (2004) Left ventricular myocardial velocities in healthy children: quantitative assessment by tissue Doppler echocardiography and relation to the characteristics of filling of the left ventricle. Cardiol Young 14(2):156–163

    PubMed  Google Scholar 

  52. Rakowski H et al (1996) Canadian consensus recommendations for the measurement and reporting of diastolic dysfunction by echocardiography: from the Investigators of Consensus on Diastolic Dysfunction by Echocardiography. J Am Soc Echocardiogr 9(5):736–760

    CAS  PubMed  Google Scholar 

  53. Yamamoto K et al (1997) Assessment of left ventricular end-diastolic pressure by Doppler echocardiography: contribution of duration of pulmonary venous versus mitral flow velocity curves at atrial contraction. J Am Soc Echocardiogr 10(1):52–59

    CAS  PubMed  Google Scholar 

  54. Harada K et al (1999) Serial echocardiographic and Doppler evaluation of left ventricular systolic performance and diastolic filling in premature infants. Early Hum Dev 54(2):169–180

    CAS  PubMed  Google Scholar 

  55. Abraham TP et al (2002) Time to onset of regional relaxation: feasibility, variability and utility of a novel index of regional myocardial function by strain rate imaging. J Am Coll Cardiol 39(9):1531–1537

    PubMed  Google Scholar 

  56. de Marchi SF et al (2001) Pulmonary venous flow velocity patterns in 404 individuals without cardiovascular disease. Heart 85(1):23–29

    PubMed Central  PubMed  Google Scholar 

  57. Appleton CP (1997) Hemodynamic determinants of Doppler pulmonary venous flow velocity components: new insights from studies in lightly sedated normal dogs. J Am Coll Cardiol 30(6):1562–1574

    CAS  PubMed  Google Scholar 

  58. Kimura K et al (2001) The importance of pulmonary venous flow measurement for evaluating left ventricular end-diastolic pressure in patients with coronary artery disease in the early stage of diastolic dysfunction. J Am Soc Echocardiogr 14(10):987–993

    CAS  PubMed  Google Scholar 

  59. Nagueh SF et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10(2):165–193

    PubMed  Google Scholar 

  60. Mullens W et al (2009) Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation 119(1):62–70

    PubMed Central  PubMed  Google Scholar 

  61. Agricola E et al (2005) Doppler tissue imaging: a reliable method for estimation of left ventricular filling pressure in patients with mitral regurgitation. Am Heart J 150(3):610–615

    PubMed  Google Scholar 

  62. Nagueh SF et al (1998) Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue doppler imaging. Circulation 98(16):1644–1650

    CAS  PubMed  Google Scholar 

  63. Ritzema JL et al (2011) Serial Doppler echocardiography and tissue Doppler imaging in the detection of elevated directly measured left atrial pressure in ambulant subjects with chronic heart failure. JACC Cardiovasc Imaging 4(9):927–934

    PubMed  Google Scholar 

  64. Ohte N et al (1998) Evaluation of left ventricular early diastolic performance by color tissue Doppler imaging of the mitral annulus. Am J Cardiol 82(11):1414–1417

    CAS  PubMed  Google Scholar 

  65. Sohn DW et al (1997) Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol 30(2):474–480

    CAS  PubMed  Google Scholar 

  66. Nagueh SF et al (2001) Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol 37(1):278–285

    CAS  PubMed  Google Scholar 

  67. Ha JW et al (2005) Diastolic stress echocardiography: a novel noninvasive diagnostic test for diastolic dysfunction using supine bicycle exercise Doppler echocardiography. J Am Soc Echocardiogr 18(1):63–68

    PubMed  Google Scholar 

  68. Khankirawatana B et al (2004) Peak atrial systolic mitral annular velocity by Doppler tissue reliably predicts left atrial systolic function. J Am Soc Echocardiogr 17(4):353–360

    PubMed  Google Scholar 

  69. Kjaergaard J et al (2005) Measurement of cardiac time intervals by Doppler tissue M-mode imaging of the anterior mitral leaflet. J Am Soc Echocardiogr 18(10):1058–1065

    PubMed  Google Scholar 

  70. Ommen SR et al (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102(15):1788–1794

    CAS  PubMed  Google Scholar 

  71. Sohn DW et al (1999) Mitral annulus velocity in the evaluation of left ventricular diastolic function in atrial fibrillation. J Am Soc Echocardiogr 12(11):927–931

    CAS  PubMed  Google Scholar 

  72. Ha JW et al (2001) Annulus paradoxus: transmitral flow velocity to mitral annular velocity ratio is inversely proportional to pulmonary capillary wedge pressure in patients with constrictive pericarditis. Circulation 104(9):976–978

    CAS  PubMed  Google Scholar 

  73. Garcia MJ et al (1996) Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging. J Am Coll Cardiol 27(1):108–114

    CAS  PubMed  Google Scholar 

  74. Hasegawa H et al (2003) Diastolic mitral annular velocity during the development of heart failure. J Am Coll Cardiol 41(9):1590–1597

    PubMed  Google Scholar 

  75. Rivas-Gotz C et al (2003) Time interval between onset of mitral inflow and onset of early diastolic velocity by tissue Doppler: a novel index of left ventricular relaxation: experimental studies and clinical application. J Am Coll Cardiol 42(8):1463–1470

    PubMed  Google Scholar 

  76. Roberson DA et al (2007) Annular and septal Doppler tissue imaging in children: normal z-score tables and effects of age, heart rate, and body surface area. J Am Soc Echocardiogr 20(11):1276–1284

    PubMed  Google Scholar 

  77. Harada K et al (2000) Tissue doppler imaging of left and right ventricles in normal children. Tohoku J Exp Med 191(1):21–29

    Google Scholar 

  78. Harada K et al (2001) A comparison of tissue Doppler imaging and velocities of transmitral flow in children with elevated left ventricular preload. Cardiol Young 11(3):261–268

    CAS  PubMed  Google Scholar 

  79. Oyamada J et al (2008) Noninvasive estimation of left ventricular end-diastolic pressure using tissue Doppler imaging combined with pulsed-wave Doppler echocardiography in patients with ventricular septal defects: a comparison with the plasma levels of the B-type natriuretic Peptide. Echocardiography 25(3):270–277

    PubMed  Google Scholar 

  80. Anavekar NS et al (2007) Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography 24(5):452–456

    PubMed  Google Scholar 

  81. Wang J et al (2007) Comparison of novel echocardiographic parameters of right ventricular function with ejection fraction by cardiac magnetic resonance. J Am Soc Echocardiogr 20(9):1058–1064

    PubMed  Google Scholar 

  82. Koestenberger M et al (2009) Right ventricular function in infants, children and adolescents: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 640 healthy patients and calculation of z score values. J Am Soc Echocardiogr 22(6):715–719

    PubMed  Google Scholar 

  83. Ueti OM et al (2002) Assessment of right ventricular function with Doppler echocardiographic indices derived from tricuspid annular motion: comparison with radionuclide angiography. Heart 88(3):244–248

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Tei C (1995) New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol 26(2):135–136

    CAS  PubMed  Google Scholar 

  85. Kakouros N et al (2011) Tissue Doppler imaging of the tricuspid annulus and myocardial performance index in the evaluation of right ventricular involvement in the acute and late phase of a first inferior myocardial infarction. Echocardiography 28(3):311–319

    PubMed  Google Scholar 

  86. Cevik A et al (2012) Quantitative evaluation of right ventricle function by transthoracic echocardiography in childhood congenital heart disease patients with pulmonary hypertension. Echocardiography 29(7):840–848

    PubMed  Google Scholar 

  87. Salehian O et al (2004) Assessment of systemic right ventricular function in patients with transposition of the great arteries using the myocardial performance index: comparison with cardiac magnetic resonance imaging. Circulation 110(20):3229–3233

    PubMed  Google Scholar 

  88. Kim WH et al (2004) Evaluation of right ventricular dysfunction in patients with cardiac amyloidosis using Tei index. J Am Soc Echocardiogr 17(1):45–49

    PubMed  Google Scholar 

  89. Roberson DA, Cui W (2007) Right ventricular Tei index in children: effect of method, age, body surface area, and heart rate. J Am Soc Echocardiogr 20(6):764–770

    PubMed  Google Scholar 

  90. Karnati PK et al (2008) Myocardial performance index correlates with right ventricular ejection fraction measured by nuclear ventriculography. Echocardiography 25(4):381–385

    PubMed  Google Scholar 

  91. Yasuoka K et al (2004) Tei index determined by tissue Doppler imaging in patients with pulmonary regurgitation after repair of tetralogy of Fallot. Pediatr Cardiol 25(2):131–136

    CAS  PubMed  Google Scholar 

  92. Imanishi T et al (1994) Validation of continuous wave Doppler-determined right ventricular peak positive and negative dP/dt: effect of right atrial pressure on measurement. J Am Coll Cardiol 23(7):1638–1643

    CAS  PubMed  Google Scholar 

  93. Brecker SJ et al (1994) Comparison of Doppler derived haemodynamic variables and simultaneous high fidelity pressure measurements in severe pulmonary hypertension. Br Heart J 72(4):384–389

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Ishii H et al (2005) Usefulness of exercise-induced changes in plasma levels of brain natriuretic peptide in predicting right ventricular contractile reserve after repair of tetralogy of Fallot. Am J Cardiol 95(11):1338–1343

    CAS  PubMed  Google Scholar 

  95. Meluzin J et al (2001) Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion: a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J 22(4):340–348

    CAS  PubMed  Google Scholar 

  96. Vogel M et al (2001) Regional wall motion and abnormalities of electrical depolarization and repolarization in patients after surgical repair of tetralogy of Fallot. Circulation 103(12):1669–1673

    CAS  PubMed  Google Scholar 

  97. Toyono M et al (2004) Myocardial acceleration during isovolumic contraction as a new index of right ventricular contractile function and its relation to pulmonary regurgitation in patients after repair of tetralogy of Fallot. J Am Soc Echocardiogr 17(4):332–337

    PubMed  Google Scholar 

  98. Pauliks LB et al (2005) Regional myocardial velocities and isovolumic contraction acceleration before and after device closure of atrial septal defects: a color tissue Doppler study. Am Heart J 150(2):294–301

    PubMed  Google Scholar 

  99. Weidemann F et al (2002) Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes after surgical repair of tetralogy of Fallot. Am J Cardiol 90(2):133–138

    PubMed  Google Scholar 

  100. Eyskens B et al (2010) The influence of pulmonary regurgitation on regional right ventricular function in children after surgical repair of tetralogy of Fallot. Eur J Echocardiogr 11(4):341–345

    PubMed  Google Scholar 

  101. Abd El Rahman MY et al (2005) Quantitative analysis of paradoxical interventricular septal motion following corrective surgery of tetralogy of Fallot. Pediatr Cardiol 26(4):379–384

    CAS  PubMed  Google Scholar 

  102. Eyskens B et al (2004) Regional right and left ventricular function after the Senning operation: an ultrasonic study of strain rate and strain. Cardiol Young 14(3):255–264

    PubMed  Google Scholar 

  103. Becker M et al (2010) The right ventricular response to high afterload: comparison between healthy persons and patients with transposition of the great arteries: a 2D strain study. Echocardiography 27(10):1256–1262

    PubMed  Google Scholar 

  104. Khoo NS et al (2009) Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 22(11):1279–1288

    PubMed  Google Scholar 

  105. Zoghbi WA et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16(7):777–802

    PubMed  Google Scholar 

  106. Choi JY et al (2008) Right ventricular restrictive physiology in repaired tetralogy of Fallot is associated with smaller respiratory variability. Int J Cardiol 125(1):28–35

    PubMed  Google Scholar 

  107. Celermajer DS et al (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340(8828):1111–1115

    CAS  PubMed  Google Scholar 

  108. Corretti MC et al (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39(2):257–265

    PubMed  Google Scholar 

  109. Hansell J et al (2004) Non-invasive assessment of endothelial function—relation between vasodilatory responses in skin microcirculation and brachial artery. Clin Physiol Funct Imaging 24(6):317–322

    PubMed  Google Scholar 

  110. Cavalcante JL et al (2011) Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 57(14):1511–1522

    PubMed  Google Scholar 

  111. Jo CO et al (2010) A simple method of measuring thoracic aortic pulse wave velocity in children: methods and normal values. J Am Soc Echocardiogr 23(7):735–740

    PubMed  Google Scholar 

  112. O’Rourke MF et al (2002) Clinical applications of arterial stiffness: definitions and reference values. Am J Hypertens 15(5):426–444

    PubMed  Google Scholar 

  113. Blacher J et al (1999) Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 33(5):1111–1117

    CAS  PubMed  Google Scholar 

  114. Karamanoglu M et al (1993) An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J 14(2):160–167

    CAS  PubMed  Google Scholar 

  115. Takazawa K et al (1998) Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension 32(2):365–370

    CAS  PubMed  Google Scholar 

  116. McEniery CM et al (2005) Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 46(9):1753–1760

    PubMed  Google Scholar 

  117. Stefanadis C et al (1990) Distensibility of the ascending aorta: comparison of invasive and non-invasive techniques in healthy men and in men with coronary artery disease. Eur Heart J 11(11):990–996

    CAS  PubMed  Google Scholar 

  118. Hirai T et al (1989) Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation 80(1):78–86

    CAS  PubMed  Google Scholar 

  119. Stefanadis C et al (1987) Aortic distensibility abnormalities in coronary artery disease. Am J Cardiol 59(15):1300–1304

    CAS  PubMed  Google Scholar 

  120. Merillon JP et al (1978) Evaluation of the elasticity and characteristic impedance of the ascending aorta in man. Cardiovasc Res 12(7):401–406

    CAS  PubMed  Google Scholar 

  121. Oyamada J et al (2012) Altered central aortic elastic properties in Kawasaki disease are related to changes in left ventricular geometry and coronary artery aneurysm formation. J Am Soc Echocardiogr 25(6):690–696

    PubMed  Google Scholar 

  122. Scapellato F et al (2001) Accurate noninvasive estimation of pulmonary vascular resistance by Doppler echocardiography in patients with chronic failure heart failure. J Am Coll Cardiol 37(7):1813–1819

    CAS  PubMed  Google Scholar 

  123. Shandas R et al (2001) Development of a noninvasive ultrasound color M-mode means of estimating pulmonary vascular resistance in pediatric pulmonary hypertension: mathematical analysis, in vitro validation, and preliminary clinical studies. Circulation 104(8):908–913

    CAS  PubMed  Google Scholar 

  124. Hoffman JI (1984) Maximal coronary flow and the concept of coronary vascular reserve. Circulation 70(2):153–159

    CAS  PubMed  Google Scholar 

  125. Hiraishi S et al (2002) Transthoracic Doppler assessment of coronary flow velocity reserve in children with Kawasaki disease: comparison with coronary angiography and thallium-201 imaging. J Am Coll Cardiol 40(10):1816–1824

    PubMed  Google Scholar 

  126. Harada K et al (2002) Coronary flow reserve assessment by Doppler echocardiography in children with and without congenital heart defect: comparison with invasive technique. J Am Soc Echocardiogr 15(10 Pt 2):1121–1126

    PubMed  Google Scholar 

  127. Aoki M, Harada K, Takada G (2003) Noninvasive visualization and measurement of posterior descending coronary artery flow velocity by transthoracic Doppler echocardiography in normal children. Am J Cardiol 91(3):376–379

    PubMed  Google Scholar 

  128. Aoki M, Harada K, Takada G (2003) Normal values for left anterior descending coronary artery flow velocity assessed by transthoracic doppler echocardiography in healthy children. Tohoku J Exp Med 199(4):211–217

    PubMed  Google Scholar 

  129. Canetti M et al (2003) Evaluation of myocardial blood flow reserve in patients with chronic congestive heart failure due to idiopathic dilated cardiomyopathy. Am J Cardiol 92(10):1246–1249

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manatomo Toyono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Toyono, M. (2015). Assessment of Ventricular-Vascular Function by Echocardiography. In: Senzaki, H., Yasukochi, S. (eds) Congenital Heart Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54355-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54355-8_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54354-1

  • Online ISBN: 978-4-431-54355-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics