Skip to main content

Photochromism of Diarylethenes at Surfaces and Interfaces

  • Chapter
  • First Online:
New Frontiers in Photochromism
  • 1452 Accesses

Abstract

Photochromic reactions of diarylethene derivatives are investigated at the surfaces of noble metal nanoparticles and at the interfaces between solution and highly ordered pyrolytic graphite (HOPG). The network prepared from diarylethene molecules and gold nanoparticles showed completely reversible 25-fold conductance photoswitching. Photo- and electrochromism of the diarylethene ligand overcame the quenching effect of the photoexcited state on metal nanoparticles. The switching behavior is attributed to the change in the π-conjugation in the molecules, that is, in the open-ring isomer the π-conjugation is discontinued, while in the closed-ring isomer the π-conjugation is delocalized throughout the molecule. By using scanning tunneling microscopy at a solution–HOPG interface, diarylethene derivatives that have a pyrene moiety showed reversible photoinduced molecular ordering change. The different photochromic isomers showed different orderings reflecting the differences in their molecular structures. For the diarylethene–pyrene–diarylethene triad, a new ordering appeared upon irradiation with UV light and returned to the original ordering upon subsequent irradiation with visible light. The new arrangement was assigned to the ordering of the closed–closed isomers based on the images of the isolated open and closed isomers. These results show that photochromic molecules are candidates for future switching units in molecular electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803–3834

    Article  CAS  Google Scholar 

  2. Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-­molecular devices. Nature 408:541–548

    Article  CAS  Google Scholar 

  3. Nitzan A, Ratner MA (2003) Electron transport in molecular wire junctions. Science 300:1384–1389

    Article  CAS  Google Scholar 

  4. Daniel M-C, Austruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  5. Dri C, Peters MV, Schwarz J, Hecht S, Grill L (2007) Spatial periodicity in molecular switching. Nat Nanotech 2:687–691

    Article  Google Scholar 

  6. Elemans JAAW, Lei S, De Feyter S (2009) Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew Chem Int Ed 48:7298–7332

    Article  CAS  Google Scholar 

  7. Florio GM, Klare JE, Pasamba MO, Werblowsky TL, Hyers M, Berne BJ, Hybertsen MS, Nuckolls C, Flynn GW (2006) Frustrated ostwald ripening in self-assembled monolayers of cruciform π-systems. Langmuir 22:10003–10008

    Article  CAS  Google Scholar 

  8. Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30

    Article  CAS  Google Scholar 

  9. Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem Mater 13:1674–1681

    Article  CAS  Google Scholar 

  10. Manna A, Chen P-L, Akiyama H, Wei T-X, Tamada K, Knoll W (2003) Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem Mater 15:20–28

    Article  CAS  Google Scholar 

  11. Ipe I, Mahima S, Thomas KG (2003) Light-induced modulation of self-assembly on spiropyran-­capped gold nanoparticles: a potential system for the controlled release of amino acid derivatives. J Am Chem Soc 125:7174–7175

    Article  CAS  Google Scholar 

  12. Matsuda K, Ikeda M, Irie M (2004) Photochromism of diarylethene-capped gold nanoparticles. Chem Lett 33:456–457

    Article  CAS  Google Scholar 

  13. Yamaguchi H, Ikeda M, Matsuda K, Irie M (2006) Photochromism of diarylethenes on gold and silver nanoparticles. Bull Chem Soc Jpn 79:1413–1419

    Article  CAS  Google Scholar 

  14. Brust M, Walker, M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 801–802

    Google Scholar 

  15. Kang SY, Kim K (1998) Comparative study of dodecanethiol-derivatized silver nanoparticles prepared in one-phase and two-phase systems. Langmuir 14:226–230

    Article  CAS  Google Scholar 

  16. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002

    Article  CAS  Google Scholar 

  17. Barazzouk S, Kamat PV, Hotchaudani S (2005) Photoinduced electron transfer between chlorophyll a and gold nanoparticles. J Phys Chem B 109:716–723

    Article  CAS  Google Scholar 

  18. Jong JJD, Bowden TN, van Esch J, Feringa BL, van Wees BJ (2003) One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91:207402

    Article  Google Scholar 

  19. Taniguchi M, Nojima Y, Yokota K, Terao J, Sato K, Kambe N, Kawai T (2006) Self-organized interconnect method for molecular devices. J Am Chem Soc 128:15062–15063

    Article  CAS  Google Scholar 

  20. Whalley AC, Steigerwald ML, Guo X, Nuckolls C (2007) Reversible switching in molecular electronic devices. J Am Chem Soc 129:12590–12591

    Article  CAS  Google Scholar 

  21. Ogawa T, Kobayashi K, Masuda G, Takase T, Maeda S (2001) Electronic conductive characteristics of devices fabricated with 1,10-decanedithiol and gold nanoparticles between 1-μm electrode gaps. Thin Solid Films 393:374–378

    Article  CAS  Google Scholar 

  22. Bernard L, Kamdzhilov Y, Calame M, van der Molen SJ, Liao J, Schönenberger C (2007) Spectroscopy of molecular junction networks obtained by place exchange in 2D nanoparticle arrays. J Phys Chem C 111:18445–18450

    Article  CAS  Google Scholar 

  23. Ikeda M, Tanifuji N, Yamaguchi H, Irie M, Matsuda K (2007) Photoswitching of conductance of diarylethene-Au nanoparticle network. Chem Commun 1355–1357

    Google Scholar 

  24. Matsuda K, Yamaguchi H, Sakano T, Ikeda M, Tanifuji N, Irie M (2008) Conductance photoswitching of diarylethene–gold nanoparticle network induced by photochromic reaction. J Phys Chem C 112:17005–17010

    Article  CAS  Google Scholar 

  25. Koshido T, Kawai T, Yoshino K (1995) Optical and electrochemical properties of cis-1,2-­dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethane. J Phys Chem 99:6110–6114

    Article  CAS  Google Scholar 

  26. Peters A, Branda NR (2003) Electrochemically induced ring-closing of photochromic 12-­dithienylcyclopentenes. Chem Commun 954–955

    Google Scholar 

  27. Yamaguchi H, Matsuda K (2009) Photo- and electrochromic switching of diarylethene–gold nanoparticle network on interdigitated electrodes. Chem Lett 38:946–947

    Article  CAS  Google Scholar 

  28. Kudernac T, van der Molen SJ, van Wees BJ, Feringa BL (2006) Uni- and bi-directional light-­induced switching of diarylethenes on gold nanoparticles. Chem Commun 3597–3599

    Google Scholar 

  29. Otsuki J, Komatsu Y, Kobayashi D, Asakawa M, Miyake K (2010) Rotational libration of a double-decker porphyrin visualized. J Am Chem Soc 132:6870–6871

    Article  CAS  Google Scholar 

  30. Xu H, Minoia A, Tomović Ž, Lazzaroni R, Meijer EW, Schenning APHJ, De Feyter S (2009) A multivalent hexapod: conformational dynamics of six-legged molecules in self-assembled monolayers at a solid–liquid interface. ACS Nano 3:1016–1024

    Article  CAS  Google Scholar 

  31. Piot L, Marchenko A, Wu J, Müllen K, Fichou D (2005) Structural evolution of hexa-peri-hexabenzocoronene adlayers in heteroepitaxy on n-pentacontane template monolayers. J Am Chem Soc 127:16245–16250

    Article  CAS  Google Scholar 

  32. Adisoejoso J, Tahara K, Okuhata S, Lei S, Tobe Y, De Feyter S (2009) Two-dimensional crystal engineering: a four-component architecture at a liquid–solid interface. Angew Chem Int Ed 48:7353–7357

    Article  CAS  Google Scholar 

  33. Lackinger M, Griessl S, Kampschulte L, Jamitzky F, Heckl WM (2005) Dynamics of grain boundaries in two-dimensional hydrogen-bonded molecular networks. Small 1:532–539

    Article  CAS  Google Scholar 

  34. Samorí P, Müllen K, Rabe JP (2004) Molecular-scale tracking of the self-healing of polycrystalline monolayers at the solid–liquid interface. Adv Mater 16:1761–1765

    Article  Google Scholar 

  35. Katsonis N, Kudernac T, Walko M, van der Molen SJ, van Wees BJ, Feringa BL (2006) Reversible conductance switching of single diarylethenes on a gold surface. Adv Mater 18:1397–1400

    Article  CAS  Google Scholar 

  36. Arramel, Pijper TC, Kudernac T, Katsonis N, van der Maas M, Feringa BL, van Wees BJ (2012) Electronic properties of individual diarylethene molecules studied using scanning tunneling spectroscopy. J Appl Phys 111:083716

    Article  Google Scholar 

  37. Arai R, Uemura S, Irie M, Matsuda K (2008) Reversible photoinduced change in molecular ordering of diarylethene derivatives at a solution–HOPG interface. J Am Chem Soc 130:9371–9379

    Article  CAS  Google Scholar 

  38. Uji-i H, Yoshidome M, Hobley J, Hatanaka K, Fukumura H (2003) Structural variations in self-assembled monolayers of 1-pyrenehexadecanoic acid and 4,4′-bipyridyl on graphite at the liquid–solid interface. Phys Chem Chem Phys 5:4231–4235

    Article  CAS  Google Scholar 

  39. Hirose T, Matsuda K, Irie M (2006) Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. J Org Chem 71:7499–7508

    Article  CAS  Google Scholar 

  40. Vanoppen P, Grim PCM, Rücker M, De Feyter S, Moessner G, Valiyaveettil S, Müllen K, De Schryver FC (1996) Solvent codeposition and cis–trans isomerization o isophthalic acid ­derivatives studied by STM. J Phys Chem 100:19636–19641

    Article  CAS  Google Scholar 

  41. Xu L-P, Wan L-J (2006) STM investigation of the photoisomerization of an azobis-(benzo-­15-crown-5) molecule and its self-assembly on Au(111). J Am Chem Soc 110:3185–3188

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Matsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Matsuda, K. (2013). Photochromism of Diarylethenes at Surfaces and Interfaces. In: Irie, M., Yokoyama, Y., Seki, T. (eds) New Frontiers in Photochromism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54291-9_6

Download citation

Publish with us

Policies and ethics