Skip to main content

Selective Metal Deposition Based on Photochromism of Diarylethenes

  • Chapter
  • First Online:
New Frontiers in Photochromism
  • 1429 Accesses

Abstract

Various novel functions on photochromic surfaces have been attracting interest. Selective metal deposition on a photochromic diarylethene surface is one such function and signifies that metal vapor atoms are deposited on the colored surface but not on the uncolored surface. This chapter introduces the phenomena, origin, extension, and applications of selective metal deposition. The origin of selective metal deposition is in a large change in the glass transition temperature (T g) based on the photoisomerization of diarylethene. Low-T g uncolored surface with active molecular motion causes metal atom desorption from the surface. The selective metal deposition phenomenon can be extended to various aspects including organic crystal and polymer surfaces. We demonstrate the following applications of selective metal deposition: patterned cathode preparation for organic light-emitting devices, micro thin-film fuse, multifunctional diffraction grating, and metal vapor integration. Selective metal deposition is expected for applications in various electric and optic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith DL (1995) Thin-film deposition: principles & practice. McGraw-Hill, New York

    Google Scholar 

  2. Tsujioka T, Sesumi Y, Takagi R, Masui K, Yokojima S, Uchida K, Nakamura S (2008) Selective metal deposition on photo-switchable molecular surfaces. J Am Chem Soc 130:10740–10747

    Article  CAS  Google Scholar 

  3. Tsujioka T, Sesumi Y, Yokojima S, Nakamura S, Uchida K (2009) Metal atom behavior on photochromic diarylethene surfaces-deposition rate dependence of selective Mg deposition. New J Chem 33:1335–1338

    Article  CAS  Google Scholar 

  4. Tsujioka T, Dohi M (2012) Light-controlled selective Pb deposition on photochromic surfaces. Appl Phys Express 5:041603

    Article  Google Scholar 

  5. Iwai Y, Tsujioka T (2011) Metal deposition selectivity based on photochromism of diarylethene film in intermediate vacuum. Jpn J Appl Phys 50:081602

    Article  Google Scholar 

  6. Tsujioka T, Tsuji K (2012) Metal-vapor deposition modulation on soft polymer surfaces. Appl Phys Express 5:021601

    Article  Google Scholar 

  7. Sesumi Y, Yokojima S, Nakamura S, Uchida K, Tsujioka T (2010) Light-controlled selective metal deposition on a photochromic diarylethene film – toward new applications in electronics and photonics. Bull Chem Soc Jpn 83:756–761

    Article  CAS  Google Scholar 

  8. Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C (2004) High mobility of dithiophene-­tetrathiafulvalene single-crystal organic field effect transistors. J Am Chem Soc 126:984–985

    Article  CAS  Google Scholar 

  9. Anthony JE (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106:5028–5048

    Article  CAS  Google Scholar 

  10. Tsujioka T, Sasa T, Kakihara Y (2012) Nonvolatile organic memory based on isomerization of diarylethene molecules by electrical carrier injection. Org Electr 13:681–686

    Article  CAS  Google Scholar 

  11. Tsujioka T, Kondo K (2003) Organic bistable molecular memory using photochromic diarylethene. Appl Phys Lett 83:937–939

    Article  CAS  Google Scholar 

  12. Tsujioka T, Iefuji N, Jiapaer A, Irie M, Nakamura S (2006) Hole-injection isomerization of photochromic diarylethene for organic molecular memory. Appl Phys Lett 89:222102

    Article  Google Scholar 

  13. Irie M (2000) Diarylethenes for memory and switches. Chem Rev 100:1685–1716

    Article  CAS  Google Scholar 

  14. Tsujioka T, Shimizu Y, Irie M (1994) Crosstalk in photon-mode photochromic multi-­wavelength recording. Jpn J Appl Phys 33:1914–1919

    Article  CAS  Google Scholar 

  15. Tsujioka T (2011) Selective metal deposition on photosensitive organic crystal surfaces. J Mater Chem 21:12639–12643

    Article  CAS  Google Scholar 

  16. Nakajima K, Yamaguchi H, Lee JC, Kageshima M, Ikehara T, Nishi T (1997) Nanorheology of polymer blends investigated by atomic force microscopy. Jpn J Appl Phys 36:3850–3854

    Article  CAS  Google Scholar 

  17. Tsujioka T, Takagi R, Shiozawa T (2010) Light-controlled metal deposition on photochromic polymer films. J Mater Chem 20:9623–9627

    Article  CAS  Google Scholar 

  18. Huang J, Su J-H, Tian H (2012) The development of anthracene derivatives for organic light-­emitting diodes. J Mater Chem 22:10977–10989

    Article  CAS  Google Scholar 

  19. Sun Y, Liu Y, Zhu D (2005) Advances in organic field-effect transistors. J Mater Chem 15:53–65

    Article  CAS  Google Scholar 

  20. Masui K, Takagi R, Sesumi Y, Nakamura S, Tsujioka T (2009) Selective metal deposition for a structure with a thin intermediate layer on a photochromic diarylethene film. J Mater Chem 19:3176–3180

    Article  CAS  Google Scholar 

  21. Takagi R, Masui K, Nakamura S, Tsujioka T (2008) Metal patterning using maskless vacuum evaporation process based on selective deposition of photochromic diarylethene. Appl Phys Lett 93:213304

    Article  Google Scholar 

  22. Martin JE, Heaney MB (2000) Reversible thermal fusing model of carbon black current-­limiting thermistors. Phys Rev B 62:9390–9397

    Article  CAS  Google Scholar 

  23. Tsujioka T, Matsui N (2012) Photoreprogrammable dual-function diffraction grating based on photochromism and selective metal deposition. Opt Lett 37:70–72

    Article  CAS  Google Scholar 

  24. Tsujioka T, Matsui N (2011) Dual-functional diffraction grating based on selective metal deposition of photochromic diarylethene. Opt Lett 36:3648–3650

    Article  CAS  Google Scholar 

  25. Tsujioka T, Matsui A (2009) Light-controlled selective metal deposition on photopolymer films. Appl Phys Lett 94:013302

    Article  Google Scholar 

  26. Tsujioka T, Irie M (2010) Electrical functions of photochromic molecules. J Photochem Photobiol C: Photochem Rev 11:1–14

    Article  CAS  Google Scholar 

  27. Tsujioka T, Yamamoto M, Shoji K, Tani K (2010) Efficient carrier separation from a photochromic diarylethene layer. Photochem Photobiol Sci 9:157–161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Tsujioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Tsujioka, T. (2013). Selective Metal Deposition Based on Photochromism of Diarylethenes. In: Irie, M., Yokoyama, Y., Seki, T. (eds) New Frontiers in Photochromism. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54291-9_4

Download citation

Publish with us

Policies and ethics