Skip to main content

Advanced Materials Design of Rare-Earth-Doped Semiconductors by Organometallic Vapor Phase Epitaxy

  • Chapter
  • First Online:
Progress in Advanced Structural and Functional Materials Design

Abstract

Much attention has been paid to rare-earth (RE)-doped semiconductors as a promising new class of materials that can emit light from the RE 4f-shell by electrical injection. We have grown Er,O-codoped GaAs and Eu-doped GaN by atomically controlled organometallic vapor phase epitaxy (OMVPE), and demonstrated light-emitting diodes (LEDs) with the materials, operating at room temperature under current injection. The LEDs exhibit a characteristic emission due to the intra-4f shell transitions of trivalent RE ions that are effectively excited by the energy transfer from the hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dierolf V, Fujiwara Y, Hommerich U, Ruterana P, Zavada JM (eds) (2009) Materials Research Society symposium proceedings, rare-earth doping of advanced materials for photonic applications, vol 1111. Materials Research Society, Pennsylvania

    Google Scholar 

  2. Fujiwara Y, Ofuchi H, Tabuchi M, Takeda Y (2000) In: Manasreh MO (ed) InP and related compounds—materials, applications and devices, optoelectronic properties of semiconductors and superlattices, vol 9. Gordon and Breach Science, Amsterdam, p 251

    Google Scholar 

  3. Fujiwara Y, Matsubara N, Tsuchiya J, Ito T, Takeda Y (1997) Effects of growth temperature on Er-related photoluminescence in Er-doped InP and GaAs grown by organometallic vapor phase epitaxy with tertiarybutylphosphine and tertiarybutylarsine. Jpn J Appl Phys 36:2587

    Article  CAS  Google Scholar 

  4. Fujiwara Y, Curtis AP, Stillman GE, Matsubara N, Takeda Y (1998) Low-temperature photoluminescence study on Er-doped GaP grown by organometallic vapor phase epitaxy. J Appl Phys 83:4902

    Article  CAS  Google Scholar 

  5. Favennec PN, L’Haridon H, Moutonnet D, Salve M, Gauneau M (1990) Optical activation of Er3+ implanted in silicon by oxygen impurities. Jpn J Appl Phys 29:L524

    Article  CAS  Google Scholar 

  6. Takahei K, Taguchi A (1993) Selective formation of an efficient Er-0 luminescence center in GaAs by metalorganic chemical vapor deposition under an atmosphere containing oxygen. J Appl Phys 74:1979

    Article  CAS  Google Scholar 

  7. Takahei K, Taguchi A, Horikoshi Y, Nakata J (1994) Atomic configuration of the Er-O luminescence center in Er-doped GaAs with oxygen codoping. J Appl Phys 76:4332

    Article  CAS  Google Scholar 

  8. Fujiwara Y, Nonogaki Y, Oga R, Koizumi A, Takeda Y (2003) Reactor structure dependence of interface abruptness in GaInAs/InP and GaInP/GaAs grown by organometallic vapor phase epitaxy. Appl Surf Sci 216:564

    Article  CAS  Google Scholar 

  9. Fujiwara Y, Kawamoto T, Koide T, Takeda Y (1999) Luminescence properties of Er, O-codoped III-V semiconductors by organometallic vapor phase epitaxy. Physica B 273–274:770

    Article  Google Scholar 

  10. Taguchi A, Takahei K, Horikoshi Y (1994) Multiphonon-assisted energy transfer between Yb 4f shell and InP host. J Appl Phys 76:7288

    Article  CAS  Google Scholar 

  11. Koizumi A, Fujiwara Y, Inoue K, Urakami A, Yoshikane T, Takeda Y (2003) Room-temperature 1.54 μm light emission from Er, O-codoped GaAs/GaInP LEDs grown by low-pressure organometallic vapor phase epitaxy. Jpn J Appl Phys 42:2223

    Article  CAS  Google Scholar 

  12. Fujiwara Y, Takemoto S, Nakamura K, Shimada K, Suzuki M, Hidaka K, Terai Y, Tonouchi M (2007) Ultrafast carrier-trapping in Er-doped and Er, O-codoped GaAs revealed by pump and probe technique. Physica B 401–402:234

    Article  Google Scholar 

  13. Shimada K, Terai Y, Takemoto S, Hidaka K, Fujiwara Y, Suzuki M, Tonouchi M (2008) Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy. Appl Phys Lett 92:111115

    Article  Google Scholar 

  14. Terai Y, Hidaka K, Fujii K, Takemoto S, Tonouchi M, Fujiwara Y (2008) Ultrafast carrier-capturing in GaInP/Er, O-codoped GaAs/GaInP laser diodes grown by organometallic vapor phase epitaxy. Appl Phys Lett 93:231117

    Article  Google Scholar 

  15. Fujiwara Y, Koizumi A, Urakami A, Yoshikane T, Inoue K, Takeda Y (2003) Room-temperature 1.5 μm electroluminescence from GaInP/Er, O-codoped GaAs/GaInP double heterostructure injection-type light emitting diodes grown by organometallic vapor phase epitaxy. Mater Sci Eng B 105:57

    Article  Google Scholar 

  16. Koizumi A, Fujiwara Y, Urakami A, Inoue K, Yoshikane T, Takeda Y (2003) Room-temperature electroluminescence properties of Er, O-codoped GaAs injection-type light emitting diodes grown by organometallic vapor phase epitaxy. Appl Phys Lett 83:4521

    Article  CAS  Google Scholar 

  17. Koizumi A, Fujiwara Y, Urakami A, Inoue K, Yoshikane T, Takeda Y (2003) Effects of active layer thickness on Er excitation cross section in GaInP/GaAs:Er, O/GaInP DH structure light-emitting diodes. Physica B 340–342:309

    Article  Google Scholar 

  18. Priolo F, Franzo G, Coffa S, Carnera A (1998) Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si. Phys Rev B 57:4443

    Article  CAS  Google Scholar 

  19. Nishikawa A, Kawasaki T, Furukawa N, Terai Y, Fujiwara Y (2009) Room-temperature red emission from p-type/europium-doped/n-type gallium nitride light-emitting diodes under current injection. Appl Phys Exp 2:071004

    Article  Google Scholar 

  20. Kawasaki T, Furukawa N, Nishikawa A, Terai Y, Fujiwara Y (2010) Effect of growth temperature on Eu-doped GaN layers grown by organometallic vapor phase epitaxy. Phys Status Solidi C 7:2040

    Article  CAS  Google Scholar 

  21. Nishikawa A, Furukawa N, Kawasaki T, Terai Y, Fujiwara Y (2010) Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy. Appl Phys Lett 97:051113

    Article  Google Scholar 

  22. Furukawa N, Nishikawa A, Kawasaki T, Terai Y, Fujiwara Y (2011) Atmospheric pressure growth of Eu-doped GaN by organometallic vapor phase epitaxy. Phys Status Solidi A 208:445

    Article  CAS  Google Scholar 

  23. Nishikawa A, Furukawa N, Lee D, Kawabata K, Matsuno T, Harada R, Terai Y, Fujiwara Y (2012) Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy. In: Dierolf V, Fujiwara Y, Gregorkiewicz T, Jadwisienczak W (eds) Materials Research Society symposium proceedings, rare-earth doping of advanced materials for photonic applications, vol 1342. Cambridge University Press, New York, pp. 9–13

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by a Grant-in-Aid for Creative Scientific Research No. 19GS1209 from the Japan Society for the Promotion of Science, and by the Global Centre of Excellence Program “Advanced Structural and Functional Materials Design” from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasufumi Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Fujiwara, Y., Terai, Y., Nishikawa, A. (2013). Advanced Materials Design of Rare-Earth-Doped Semiconductors by Organometallic Vapor Phase Epitaxy. In: Kakeshita, T. (eds) Progress in Advanced Structural and Functional Materials Design. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54064-9_21

Download citation

Publish with us

Policies and ethics