Skip to main content

Mechanical Properties of Lotus Metals and Alloys

  • Chapter
  • First Online:
Porous Metals with Directional Pores
  • 896 Accesses

Abstract

Many conventional porous materials possess almost nearly spherical pores and exhibit that those mechanical properties are usually isotropic. Moreover, the shape of pores is not always round and distorted so that the stress concentration takes place easily, which causes to weaken the strength of those materials. In addition, the overall uniformity of the pore size and the porosity is very crucial which may affect the stress concentration; some local strain under the stress is accumulated into the nonuniform region to degrade the materials strength. Thus, the foamed materials, cellular-structured materials, or sintered materials exhibit inferior mechanical properties.

Different from such conventional porous materials, lotus materials have elongated cylindrical pores aligned unidirectionally, and various mechanical properties are remarkably different from those of isotropic porous materials and show significant anisotropic behavior. Although the data on the mechanical properties of such anisotropic porous materials are not so much accumulated compared with the isotropic porous materials, it is at present good enough to review some systematic view of the mechanical properties of the lotus metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakajima H, Ikeda T, Hyun SK (2003) In: Banhart J, Fleck A (eds) Cellular metals: manufacture, properties, applications. MIT, Berlin, pp 191–202

    Google Scholar 

  2. Nakajima H, Ikeda T, Hyun SK (2004) Adv Eng Mater 6:377–384

    Article  CAS  Google Scholar 

  3. Demarest HH Jr (1971) J Acoust Soc Am 49:768–775

    Article  Google Scholar 

  4. Ohno I (1976) J Phys Earth 24:355–379

    Article  CAS  Google Scholar 

  5. Ichitsubo T, Tane M, Ogi H, Hirao M, Ikeda T, Nakajima H (2002) Acta Mater 50:4105–4115

    Article  CAS  Google Scholar 

  6. Tane M, Ichitsubo T, Hirao M, Ikeda T, Nakajima H (2004) J Appl Phys 96:3696–3701

    Article  CAS  Google Scholar 

  7. Hyun SK, Ikeda T, Nakajima H (2004) Sci Tech Adv Mater 5:201–205

    Article  CAS  Google Scholar 

  8. Tane M, Ichitsubo T, Nakajima H, Hyun SK, Hirao M (2004) Acta Mater 52:5195–5201

    Article  CAS  Google Scholar 

  9. Phani HH (1986) Am Ceram Soc Bull 65:1584–1586

    CAS  Google Scholar 

  10. Kovacik J (1998) Acta Mater 46:5413–5422

    Article  CAS  Google Scholar 

  11. Kovacik J, Simancik F (1998) Scr Mater 39:239–246

    Article  CAS  Google Scholar 

  12. Rotter CA, Smith CS (1966) J Phys Chem Solids 27:267–276

    Article  CAS  Google Scholar 

  13. Simmons G, Wang H (eds) (1971) Single crystal elastic constants and calculated aggregate properties: a handbook, 2nd edn. MIT, Cambridge

    Google Scholar 

  14. Ota K, Ohashi K, Nakajima H (2003) Mater Sci Eng A341:139–143

    CAS  Google Scholar 

  15. Yoshinari O, Kobayashi T, Nakajima H, Ide T (2012) In: Hur BY, Kim BK, Kim SE, Hyun SK (eds) Porous metals and metallic foams. GSIntervision, Seoul, pp 479–485

    Google Scholar 

  16. Smithells Metals Reference Book (1992) 7th edn. edited by Brandes EA, Brook GB, Butterworth- Heinemann, Oxford, pp 12–13

    Google Scholar 

  17. Kê TS (1947) Phys Rev 71:533–546

    Article  Google Scholar 

  18. Wolla JM, Provenzano V (1995) Mater Res Soc Symp Proc 371:377–382

    CAS  Google Scholar 

  19. Simone AE, Gibson LJ (1996) Acta Metall 44:1437–1447

    CAS  Google Scholar 

  20. Hyun SK, Murakami K, Nakajima H (2001) Mater Sci Eng A 299:241–248

    Article  Google Scholar 

  21. Eudier M (1962) Powder Metall 5:278–290

    Google Scholar 

  22. Balshin MY (1949) Doklady Akad Sci USSR 67:831–996

    CAS  Google Scholar 

  23. Boccaccini AR, Ondracek G, Mombello E (1995) J Mater Sci Lett 14:534–536

    Article  Google Scholar 

  24. Peterson AR (1953) Stress concentration design factors. Wiley, New York, p 1

    Google Scholar 

  25. Dehoff RT, Gillard JP (1971) Mod Dev. In: Hausner HH (ed) Powder Metall, vol 5. Plenum, New York, p 281

    Google Scholar 

  26. Lund JA (1984) Int J Powder Metall Powder Tech 20:141–148

    CAS  Google Scholar 

  27. Cottrell AH (1952) Philos Mag 43:645–647

    Google Scholar 

  28. Lomer WM (1951) Philos Mag 42:1327–1331

    CAS  Google Scholar 

  29. Tane T, Okamoto R, Nakajima H (2010) J Mater Res 25:1975–1982

    Article  CAS  Google Scholar 

  30. ASM Handbook (1987), vol 12. American Society for Metals, Materials Park

    Google Scholar 

  31. Agogino AM (1978) J Eng Mater Technol 100:348–355

    Article  CAS  Google Scholar 

  32. Sugimura Y, Meyer J, He MY, Bart-Smith H, Grenstedt J, Evans AG (1997) Acta Mater 45:5245–5259

    Article  CAS  Google Scholar 

  33. Motz C, Pippan R (2001) Acta Mater 49:2463–2470

    Article  CAS  Google Scholar 

  34. Amsterdam E, de Vries JHB, De Hosson JTM, Onck PR (2008) Acta Mater 56:609–618

    Article  CAS  Google Scholar 

  35. Gibson LJ, Ashby MF (1997) Cellular solids. Cambridge University Press, Cambridge

    Google Scholar 

  36. Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams: a design guide. Butterworth-Heinemann, Woburn

    Google Scholar 

  37. Simone AE, Gibson LJ (1997) J Mater Sci 32:451–457

    Article  CAS  Google Scholar 

  38. Hyun SK, Nakajima H (2003) Mater Sci Eng A 340:258–264

    Article  Google Scholar 

  39. Ide T, Tane M, Ikeda T, Hyun SK, Nakajima H (2006) J Mater Res 21:185–193

    Article  CAS  Google Scholar 

  40. Qiu YP, Weng GJ (1992) J Appl Mech-Trans ASME 59:261–268

    Article  Google Scholar 

  41. Deshpande VS, Fleck NA (2000) Int J Impact Eng 24:277–298

    Article  Google Scholar 

  42. Kolsky H (1949) Proc Phys Soc London, Sect B 62:676–700

    Article  Google Scholar 

  43. Tane M, Kawashima T, Yamada H, Horikawa K, Kobayashi H, Nakajima H (2010) J Mater Res 25:1179–1190

    Article  CAS  Google Scholar 

  44. Ide T, Tane M, Nakajima H (2009) Mater Sci Eng A 508:220–225

    Article  Google Scholar 

  45. Rao PP, Tangri K (1991) Mater Sci Eng A 132:49–59

    Article  Google Scholar 

  46. Simone AE, Gibson LJ (1998) Acta Mater 46:3109–3123

    Article  CAS  Google Scholar 

  47. Hyun SK, Nakajima H, Boyko LV, Shapovalov VI (2004) Mater Lett 58:1082–1086

    Article  CAS  Google Scholar 

  48. Zhou J, Soboyejo WO (2004) Mater Sci Eng A369:23–35

    CAS  Google Scholar 

  49. Olurin OB, McCullough KYG, Fleck NA, Ashby MF (2001) Int J Fatigue 23:375–382

    Article  CAS  Google Scholar 

  50. Harte A-M, Fleck NA, Ashby MF (1999) Acta Mater 47:2511–2524

    Article  CAS  Google Scholar 

  51. Sugimura Y, Rabiei A, Evans AG, Harte AM, Fleck NA (1999) Mater Sci Eng A269:38–48

    CAS  Google Scholar 

  52. Seki H, Tane M, Otsuka M, Nakajima H (2007) J Mater Res 22:1331–1338

    Article  CAS  Google Scholar 

  53. Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  54. Gerber TL, Fuchs HO (1968) J Mater 3:359–374

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer

About this chapter

Cite this chapter

Nakajima, H., Nakajima, H. (2013). Mechanical Properties of Lotus Metals and Alloys. In: Porous Metals with Directional Pores. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54017-5_7

Download citation

Publish with us

Policies and ethics