Skip to main content

Potentially Transformative Technologies for Twenty-First Century Space

  • Chapter
  • First Online:
Yearbook on Space Policy 2015

Part of the book series: Yearbook on Space Policy ((YEARSPACE))

Abstract

Space as the discipline to demonstrate economic and political might and as military high ground has pushed human ingenuity into developing new concepts and technologies for the exploration and use of this fourth ‘space’, following land-, sea- and air-spaces. Driven by governmental ambitions and means, space agencies have developed the technologies that have made this new space accessible (chemical rockets), technologies to navigate in it (electric, chemical, nuclear and direct solar propulsion, position and trajectory determination), and to use its resources (e.g. photovoltaic cells). In doing so they have created new markets served by new industries. Some of these have already transitioned from governmental to private sector driven markets, starting with telecom applications in the 1990s. Stimulated by U.S. policy decisions in the early 2000s, the private sector has entered virtually all space domains except deep space exploration. Against this background the present paper attempts to explore potentially game changing technologies for space applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Horvath, P., Barrangou, R., 2010. CRISPR/Cas, the Immune System of Bacteria and Archaea. Science 327, 167–170. doi:10.1126/science.1179555.

  2. 2.

    An excellent account of this fruitful interplay is described in a 1999 report by the US National Research Council: Hughes, T. et al., 1999. Funding a revolution: government support for computing research (Report from the National Research Council (US). Committee on Innovations in Computing No. 0-309-52501-2), Lessons from History. National Academies Press, Washington D.C., US. More recently Mazzucato has published convincing evidence on the important role of governments in the innovation process: Mazzucato, M., 2011. The entrepreneurial state. Soundings 49, 131–142. doi:10.3898/136266211798411183.

  3. 3.

    For further information on ACT research topics and trends: Summerer, L., 2013. Thinking tomorrows’ space – research trends of the ESA advanced concepts team 2002–2012. Acta Astronautica. doi:10.1016/j.actaastro.2013.11.002; Summerer, L., 2012. Evaluating research for disruptive innovation in the space sector. Acta Astronautica 81, 484–498. doi:10.1016/j.actaastro.2012.08.009 and www.esa.int/act (last accessed 3 June 2016).

  4. 4.

    For updated information on the ESTMP: http://www.esa.int/Our_Activities/Space_Engineering_Technology/About_strategy_and_harmonisation (accessed 3 June 2016), ESA “European Space Technology Master Plan” 12th edition, European Space Agency June 2015.

  5. 5.

    Dordain, J.J., 2015 “Foreword to the 12th edition of the European Space Technology Master Plan”, June 2015.

  6. 6.

    Summerer, L., 2012. Evaluating research for disruptive innovation in the space sector. Acta Astronautica 81, 484–498. doi:10.1016/j.actaastro.2012.08.009; Summerer, L., Izzo, D., Naja-Corbin, G., I., D.-B., 2010. The seeds of disruptive innovation. ESA Bulletin 144, 34–45.

  7. 7.

    Ramsey, M., MacMillan, D., 2015. Carnegie Mellon Reels After Uber Lures Away Researchers. Wall Street Journal. 31 May 2015.

  8. 8.

    Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D., 2016. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489. doi:10.1038/nature16961.

  9. 9.

    This has been successfully demonstrated in the ESA Proba-1 technology demonstration spacecraft, cf. Teston, F., Vuilleumier, P., Hardy, D., Bernaerts, D., 2004. The PROBA-1 Microsatellite, in: Proc. of SPIE Vol. pp. 132–140. And Bernaerts, D., Bermyn, J., Teston, F., 2002. PROBA (Project for On-board Autonomy), in: Rycroft, M., Crosby, N. (Eds.), Smaller Satellites: Bigger Business? Springer Netherlands, Dordrecht, pp. 53–68.

  10. 10.

    Nicol, C., Ellery, A., Cloutis, E., Lynch, B., O’Connor, L., and de Croon, G.C.H.E., Scent of Science: Autonomous Source Localization for Exploration, European Space Agency, the Advanced Concepts Team, Ariadna Final Report (11-6301), 2013. And Papadopoulos, E. G., Kontolatis, I., and Paraskevas, I.S., Space Gaits, European Space Agency, the Advanced Concepts Team, Ariadna Final Report (12-5201), 2013.

  11. 11.

    Versloot, T.W., Barker, D.J., and Otero One, X., Optimisation of Near-Field Wireless Power Transfer Using Evolutionary Strategies, The 8th European Conference on Antennas and Propagation – EUCAP 14, The Hague, NL, The Hague, Netherlands 2014.

  12. 12.

    Broecker, B., Caliskanelli, I., Tuyls, K., Sklar, E., and Hennes, D., Social Insect-Inspired Multi-Robot Coverage, AAMAS – 14th International Conference on Autonomous Agents and Multiagent Systems, pp. 1775–1776, 2015 and Izzo, D., Simoes, L.F., and de Croon, G.C.H.E., An evolutionary robotics approach for the distributed control of satellite formations, Evolutionary Intelligence, 7(2), pp. 107–118, 2014.

  13. 13.

    Claes, D., Hennes, D., and Tuyls, K., Towards Human-Safe Navigation with Pro-Active Collision Avoidance in a Shared Workspace, DEMUR – IROS Workshop on On-line Decision-Making in Multi-Robot Coordination, 2015.

  14. 14.

    Sanchez-Sanchez, C., Izzo, D., and Hennes, D., Optimal Real-Time Landing Using Deep Networks, 6th International Conference on Astrodynamics Tools and Techniques (ICATT), 2016. And Izzo, D. and de Croon, G.C.H.E., Landing with Time-to-Contact and Ventral Optic Flow Estimates, Journal of Guidance Control and Dynamics, 35(4), pp. 1362, 2012.

  15. 15.

    Methenitis, G., Hennes, D., Izzo, D., and Visser, A., Novelty Search for Soft Robotic Space Exploration, GECCO – Genetic and Evolutionary Computation Conference, 2015. And Broecker, B., Caliskanelli, I., Tuyls, K., Sklar, E., and Hennes, D., Social Insect-Inspired Multi-Robot Coverage, ARMS – Autonomous Robots and Multirobot Systems, 2015.

  16. 16.

    Qadi, A. and de Croon, G.C.H.E., Probabilistic Computing for Efficient Robotic Vision in Space, European Space Agency, the Advanced Concepts Team, Ariadna Final Report (12-5101), 2014.

  17. 17.

    Izzo, D., Getzner, I., Hennes, D., and Simoes, L.F., Evolving solutions to TSP variants for active space debris removal, GECCO – Genetic and Evolutionary Computation Conference, 2015.

  18. 18.

    Effective dose (expressed in Sv, the weighted equivalent of a joule of radiation energy absorbed in a kg of tissue) is used to quantify the effect of radiation on the human body.

    The career effective dose before the 3 % REID limit is reached is 0.47 Sv for a 30 year-old female and 0.62 Sv for a 30 year-old male [NRC, 2008].

  19. 19.

    Durante, M., 2014. Space radiation protection: Destination Mars. Life Sciences in Space Research 1, 2–9. doi:10.1016/j.lssr.2014.01.002.

  20. 20.

    Fantini, A. 2015, presentation on “Radiation hardness of memristive systems” at the Workshop on Memristive systems for Space applications, ESA ESTEC, 30 April 2015, http://www.esa.int/gsp/ACT/events/workshops/ws_2015_Apr_30.html; and e.g. An overview of an overview of the effects of ionizing radiation and heavy ions on tantalum oxide (TaOJ), titanium dioxide (TiO2), and hafnium oxide (HfOx) memristive devices can be found in McLain, M.L., Marinella, M.J., 2015. Overview of the radiation response of anion-based memristive devices. IEEE, pp. 1–11. doi:10.1109/AERO.2015.7119304.

  21. 21.

    Biggiogera, M., Malatesta, M., Zancanaro, C., 2004. Mammalian Hibernation Mechanisms: Relevance to a Possible Human Hypometabolic Induced State (Ariadna 03-6501). European Space Agency, Advanced Concepts Team; Rossini, L., Seidl, T., Izzo, D., Summerer, L., 2007. Beyond astronaut’s capabilities: a critical review, in: Proceedings of the 58th International Astronautical Conference, Hyderabad; and Gemignani, J., Gheysens, T., Summerer, L., 2015. Beyond astronaut’s capabilities: The current state of the art. IEEE, pp. 3615–3618. doi:10.1109/EMBC.2015.7319175.

  22. 22.

    Gemignani, J., Gheysens, t., and Summerer, L., Beyond Astronaut’s Capabilities: The Current State Of The Art, 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, August, 2015.

  23. 23.

    Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., Pambaguian, L., 2014. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica 93, 430–450. doi:10.1016/j.actaastro.2013.07.034; and Kading, B., Straub, J., 2015. Utilizing in-situ resources and 3D printing structures for a manned Mars mission. Acta Astronautica 107, 317–326. doi:10.1016/j.actaastro.2014.11.036.

  24. 24.

    Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z.-X., Melosh, N.A., 2010. Photon-enhanced thermionic emission for solar concentrator systems. Nature Materials 9, 762–767. doi:10.1038/nmat2814; Buencuerpo, J., Llorens, J.M., Zilio, P., Raja, W., Cunha, J., Alabastri, A., Zaccaria, R.P., Martí, A., Versloot, T., 2015. Light-trapping in photon enhanced thermionic emitters. Optics Express 23, A1220. doi:10.1364/OE.23.0A1220; Buencuerpo, J., Llorens, J.M., Marti, A., Cunha, J., Summerer, L., and Versloot, T.W., Photon Enhanced Thermionic Emission, European Space Agency, the Advanced Concepts Team, Ariadna Final Report (14-2101a), 2015.

  25. 25.

    Mourikis, A., Trawny, N., Roumeliotis, S., Johnson, A., Ansar, A., and Matthies, L., Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing, IEEE Transactions on Robotics, Vol. 25, No. 2, 2009, pp. 264–280.

  26. 26.

    Srinivasan, M., Zhang, S., Lehrer, M., and Collett, T., Honeybee Navigation en Route to the Goal: Visual Flight Control and Odometry, The Journal of Experimental Biology, Vol. 199, 1996, pp. 237–244.

  27. 27.

    Valette, F., Ruffier, F., Viollet, S., and Seidl, T., Biomimetic optic flow sensing applied to a lunar landing scenario, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2010, pp. 2253–2260; Izzo, D., Weiss, N., and Seidl, T., Constant-Optic-Flow Lunar Landing: Optimality and Guidance, Journal of Guidance, Control, and Dynamics, Vol. 34, No. 5, 2011, pp. 1383–1395; Izzo, D. and de Croon, G.C.H.E., Landing with Time-to-Contact and Ventral Optic Flow Estimates, Journal of Guidance Control and Dynamics, 35(4), pp. 1362, 2012.

  28. 28.

    A solid account on the role of governments in the creation of such markets, it is referred to Mazzucato, M., 2015. From Market Fixing to Market-Creating: A New Framework for Economic Policy (SPRU Working Paper Series No. SWPS 2015-25). University of Sussex, Sussex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopold Summerer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Austria

About this chapter

Cite this chapter

Summerer, L. (2017). Potentially Transformative Technologies for Twenty-First Century Space. In: Al-Ekabi, C., Baranes, B., Hulsroj, P., Lahcen, A. (eds) Yearbook on Space Policy 2015. Yearbook on Space Policy. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4860-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4860-0_8

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4859-4

  • Online ISBN: 978-3-7091-4860-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics