Skip to main content

Abstract

The heart forms from the first and second heart fields which contribute to distinct regions of the myocardium. This is supported by clonal analyses which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its subdomains are controlled by a gene regulatory network and by signalling pathways which determine their behaviour. Multipotent cells in this field also can contribute cardiac endothelial and smooth muscle cells. Furthermore skeletal muscles of the head and neck are related clonally to myocardial cells that form the arterial and venous poles of the heart. These lineage relationships, together with the genes that regulate the heart fields, have major implications for congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451:943–948

    Article  CAS  PubMed  Google Scholar 

  2. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    Article  CAS  PubMed  Google Scholar 

  3. Christoffels VM, Habets PE, Franco D et al (2000) Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 223:266–278, Erratum in: Dev Biol 225:266

    Article  CAS  PubMed  Google Scholar 

  4. Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19

    Article  CAS  PubMed  Google Scholar 

  5. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238:97–109

    Article  CAS  PubMed  Google Scholar 

  6. Waldo KL, Kumiski DH, Wallis KT et al (2001) Conotruncal myocardium arises from a secondary heart field. Development 128:3179–3188

    CAS  PubMed  Google Scholar 

  7. Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    Article  CAS  PubMed  Google Scholar 

  8. Cai CL, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    Article  CAS  PubMed  Google Scholar 

  9. Galli D, Domínguez JN, Zaffran S et al (2008) Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed. Development 135:1157–1167

    Article  CAS  PubMed  Google Scholar 

  10. Zaffran S, Kelly RG, Meilhac SM et al (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268

    Article  CAS  PubMed  Google Scholar 

  11. Meilhac SM, Esner M, Kelly RG et al (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698

    Article  CAS  PubMed  Google Scholar 

  12. Lescroart F, Chabab S, Lin X et al (2014) Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol 16:829–840

    Article  CAS  PubMed  Google Scholar 

  13. Saga Y, Miyagawa-Tomita S, Takagi A et al (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126:3437–3447

    CAS  PubMed  Google Scholar 

  14. Devine WP, Wythe JD, George M et al (2014) Early patterning and specification of cardiac progenitors in gastrulating mesoderm. Elife. doi:10.7554/eLife.03848

  15. Bruneau BG, Nemer G, Schmitt JP et al (2001) A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106:709–721

    Article  CAS  PubMed  Google Scholar 

  16. Rana MS, Théveniau-Ruissy M, De Bono C et al (2014) Tbx1 coordinates addition of posterior second heart field progenitor cells to the arterial and venous poles of the heart. Circ Res 115:790–799

    Article  CAS  PubMed  Google Scholar 

  17. Liang X, Wang G, Lin L et al (2013) HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res 113:399–407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Vincent SD, Buckingham ME (2010) How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol 90:1–41

    Article  PubMed  Google Scholar 

  19. Bajolle F, Zaffran S, Losay J et al (2009) Conotruncal defects associated with anomalous pulmonary venous connections. Arch Cardiovasc Dis 102:105–110

    Article  PubMed  Google Scholar 

  20. Hutson MR, Zeng XL, Kim AJ et al (2010) Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate. Development 137:3001–3011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tirosh-Finkel L, Zeisel A, Brodt-Ivenshitz M et al (2010) BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 137:2989–3000

    Article  CAS  PubMed  Google Scholar 

  22. Xie L, Hoffmann AD, Burnicka-Turek O et al (2012) Tbx5-hedgehog molecular networks are essential in the second heart field for atrial septation. Dev Cell 23:280–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Briggs LE, Kakarla J, Wessels A (2012) The pathogenesis of atrial and atrioventricular septal defects with special emphasis on the role of the dorsal mesenchymal protrusion. Differentiation 84:117–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kelly RG (2012) The second heart field. Curr Top Dev Biol 100:33–65

    Article  CAS  PubMed  Google Scholar 

  25. Chen L, Fulcoli FG, Tang S et al (2009) Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 105:842–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Watanabe Y, Zaffran S, Kuroiwa A et al (2012) Fibroblast growth factor 10 gene regulation in the second heart field by Tbx1, Nkx2-5, and Islet1 reveals a genetic switch for down-regulation in the myocardium. Proc Natl Acad Sci U S A 109:18273–18280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Takeuchi JK, Bruneau BG (2009) Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459:708–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Prall OWJ, Menon MK, Solloway MJ et al (2007) An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128:947–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Buckingham M, Rigby PW (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238

    Article  CAS  PubMed  Google Scholar 

  30. Dodou E, Verzi MP, Anderson JP et al (2004) Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131:3931–3942

    Article  CAS  PubMed  Google Scholar 

  31. Papangeli I, Scambler P (2013) The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. Wiley Interdiscip Rev Dev Biol 2:393–403

    Article  CAS  PubMed  Google Scholar 

  32. Bertrand N, Roux M, Ryckebüsch L et al (2011) Hox genes define distinct progenitor sub-domains within the second heart field. Dev Biol 353:266–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Briggs LE, Phelps AL, Brown E et al (2013) Expression of the BMP receptor Alk3 in the second heart field is essential for development of the dorsal mesenchymal protrusion and atrioventricular septation. Circ Res 112:1420–1432

    Article  CAS  PubMed  Google Scholar 

  34. Christoffels VM, Mommersteeg MT, Trowe MO et al (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98:1555–1563

    Article  CAS  PubMed  Google Scholar 

  35. Lescroart F, Mohun T, Meilhac SM et al (2012) A lineage tree for the venous pole of the heart: clonal analysis clarifies controversial genealogy based on genetic tracing. Circ Res 111:1313–1322

    Article  CAS  PubMed  Google Scholar 

  36. Domínguez JN, Meilhac SM, Bland YS et al (2012) Asymmetric fate of the posterior part of the second heart field results in unexpected left/right contributions to both poles of the heart. Circ Res 111:1323–1335

    Article  PubMed  Google Scholar 

  37. Huynh T, Chen L, Terrell P et al (2007) A fate map of Tbx1 expressing cells reveals heterogeneity in the second cardiac field. Genesis 45:470–475

    Article  CAS  PubMed  Google Scholar 

  38. Mommersteeg MT, Brown NA, Prall OW et al (2007) Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res 101:902–909

    Article  CAS  PubMed  Google Scholar 

  39. von Both I, Silvestri C, Erdemir T et al (2004) Foxh1 is essential for development of the anterior heart field. Dev Cell 7:331–345

    Article  Google Scholar 

  40. Roessler E, Ouspenskaia MV, Karkera JD et al (2008) Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 83:18–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Washington Smoak I, Byrd NA, Abu-Issa R et al (2005) Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 283:357–372

    Article  CAS  PubMed  Google Scholar 

  42. Hildreth V, Webb S, Chaudhry B et al (2009) Left cardiac isomerism in the Sonic hedgehog null mouse. J Anat 214:894–904

    Article  PubMed Central  PubMed  Google Scholar 

  43. Milgrom-Hoffman M, Harrelson Z, Ferrara N et al (2011) The heart endocardium is derived from vascular endothelial progenitors. Development 138:4777–4787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Watanabe Y, Miyagawa-Tomita S, Vincent SD et al (2010) Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res 106:495–503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Vincent SD, Mayeuf-Louchart A, Watanabe Y et al (2014) Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo. Hum Mol Genet 23:5087–5101

    Article  PubMed  Google Scholar 

  46. Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    Article  CAS  PubMed  Google Scholar 

  47. Grifone R, Jarry T, Dandonneau M et al (2008) Properties of branchiomeric and somite-derived muscle development in Tbx1 mutant embryos. Dev Dyn 237:3071–3078

    Article  PubMed  Google Scholar 

  48. Nathan E, Monovich A, Tirosh-Finkel L et al (2008) The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 135:647–657

    Article  CAS  PubMed  Google Scholar 

  49. Lescroart F, Kelly RG, Le Garrec JF et al (2010) Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo. Development 137:3269–3279

    Article  CAS  PubMed  Google Scholar 

  50. Theis S, Patel K, Valasek P et al (2010) The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development 137:2961–2971

    Article  CAS  PubMed  Google Scholar 

  51. Lescroart F, Hamou W, Francou A et al (2015) Clonal analysis reveals a common origin between non-somitic derived neck muscles and heart myocardium. Proc Natl Acad Sci U S A 112:1446–1451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Wang W, Razy-Krajka F, Siu E et al (2013) NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol 11, e1001725

    Article  PubMed Central  PubMed  Google Scholar 

  53. Diogo R, Kelly RG, Christiaen L et al (2015) The cardiopharyngeal field and vertebrate evolution: a new heart for a new head. Nature 520:466–473

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MB acknowledges support from the Pasteur Institute and the CNRS (URA 2578). She thanks Robert G. Kelly for comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Buckingham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Wien

About this chapter

Cite this chapter

Buckingham, M. (2016). First and Second Heart Field. In: Rickert-Sperling, S., Kelly, R., Driscoll, D. (eds) Congenital Heart Diseases: The Broken Heart. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1883-2_3

Download citation

Publish with us

Policies and ethics