Skip to main content

Canceromics Studies Unravel Tumor’s Glutamine Addiction After Metabolic Reprogramming

  • Chapter
Tumor Cell Metabolism

Abstract

Metabolism is fundamental to cell survival, growth, and behavior. Tumor cells have an enhanced demand for nutrients which provide biosynthetic building blocks and cellular energy to sustain their proliferative status. Altered metabolism is a hallmark of cancer. The term metabolic reprogramming has been coined to describe the whole range of metabolic abnormalities accompanying tumorigenesis and metastasis. Increased glutamine uptake and glutaminolysis are key metabolic traits that have been consistently found on a wide range of human and experimental cancers. Glutaminase proteins control the first step in the glutaminolytic process: the conversion of glutamine to glutamate and ammonium ions. Glutaminase expression has been correlated with malignancy and growth rate on a great variety of tumors. Recent works are now starting to uncover the differential expression of glutaminase isoenzymes and their regulation by oncogenes and tumor suppressor genes. In parallel, glutaminase isoforms are attracting great interest as novel cancer chemotherapeutic targets. The focus of this chapter will highlight the role of glutamine addiction in tumor biology with particular emphasis on the interaction between the host and the tumor.

Dedicatory: This work is dedicated to Professor Dr. Ignacio Núñez de Castro on occasion of his 77th birthday. His early vision on the relevance of glutamine and glutaminases in cancer growth and proliferation, along with his seminal metabolic works in experimental tumors, paved the way for fertile research lines now being developed for many of us who had the privilege of being inspired by his example and master guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-KG:

2-Oxoglutarate

APC/C:

Anaphase-promoting complex/cyclosome

CE-MS:

Capillary electrophoresis coupled to mass spectrometry

EAA:

Essential amino acids

EATC:

Ehrlich ascites tumor cells

EGF:

Epidermal growth factor

FMNL3:

Formin-like protein 3

GA:

Glutaminase

GDH:

Glutamate dehydrogenase

GFAT:

Glutamine:fructose-6-P amidotransferase

GIP:

Glutaminase-interacting protein

GlcN-6-P:

Glucosamine-6-phosphate

GS:

Glutamine synthetase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HBP/HEX:

Hexosamine biosynthetic pathway

HDAC:

Histone deacetylase

H3K4me3:

Histone H3 trimethyl Lys4

HMGA2:

High-mobility-group AT-hook protein 2

IDH1:

Isocitrate dehydrogenase 1

IMM:

Inner mitochondrial membrane

LDH:

Lactate dehydrogenase

MCA:

Methylcholanthrene induced

mTORC1:

Mammalian target of rapamycin complex 1

MUC-1:

Mucin 1

NEDD-4:

Neural precursor cell-expressed developmentally downregulated gene 4

NF-κB:

Nuclear factor-kappa B

NMR:

Nuclear magnetic resonance

O-GlcNAc:

O-Linked N-acetyl-glucosamine

OXPHOS:

Oxidative phosphorylation

PFKFB3:

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase, isoform 3

PK:

Pyruvate kinase

PPP:

Pentose phosphate pathway

ROS:

Reactive oxygen species

SCF:

Skp1/cullin/F-box

SMP:

Submitochondrial particles

TCA:

Tricarboxylic acid cycle

TGF-β:

Transforming growth factor beta

UDP-GlcNAc:

UDP-N-acetylglucosamine

USP-15:

Ubiquitin carboxyl-terminal hydrolase 15

References

  • Abou-Khalil WH, Yunis AA, Abou-Khalil S (1983) Prominent glutamine oxidation activity in the mitochondria of hematopoietic tumors. Cancer Res 43:1990–1993

    CAS  PubMed  Google Scholar 

  • Aledo JC (2004) Glutamine breakdown in rapidly dividing cells: waste or investment? BioEssays 26:778–785

    CAS  PubMed  Google Scholar 

  • Aledo JC, Segura JA, Medina MA et al (1994) Phosphate-activated glutaminase expression during tumor development. FEBS Lett 341:39–42

    CAS  PubMed  Google Scholar 

  • Aledo JC, Segura JA, Barbero LG et al (1998) Early differential expression of two glutaminase mRNAs in mouse spleen after tumor implantation. Cancer Lett 133:95–99

    CAS  PubMed  Google Scholar 

  • Aledo JC, de Pedro E, Gómez-Fabre PM et al (2000a) Changes in mRNAs for enzymes of glutamine metabolism in the tumor-bearing mouse. Anticancer Res 20:1463–1466

    CAS  PubMed  Google Scholar 

  • Aledo JC, Gómez-Fabre PM, Olalla L et al (2000b) Identification of two human glutaminase loci and tissue-specific expression of the two related genes. Mamm Genome 11:1107–1110

    CAS  PubMed  Google Scholar 

  • Almeida A, Bolaños JP, Moncada S (2010) E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci USA 107:738–741

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ardawi MS, Newsholme EA (1983) Glutamine metabolism in lymphocytes of the rat. Biochem J 212:835–842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ardawi MS, Newsholme EA (1985) Fuel utilization in colonocytes of the rat. Biochem J 231:713–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Argilés JM, Azcón-Bieto J (1988) The metabolic environment of cancer. Mol Cell Biochem 81:3–17

    PubMed  Google Scholar 

  • Asiago VM, Alvarado LZ, Shanaiah N et al (2010) Early detection of recurrent breast cancer using metabolite profiling. Cancer Res 70:8309–8318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Battaglia FC (2000) Glutamine and glutamate exchange between the fetal liver and the placenta. J Nutr 130:974S–977S

    CAS  PubMed  Google Scholar 

  • Bode BP, Fuchs BC, Hurley BP et al (2002) Molecular and functional analysis of glutamine uptake in human hepatoma and liver-derived cells. Am J Physiol Gastrointest Liver Physiol 283:G1062–G1073

    CAS  PubMed  Google Scholar 

  • Brand K, Williams JF, Weidemann MJ (1984) Glucose and glutamine metabolism in rat thymocytes. Biochem J 221:471–475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bungard CI, McGivan JD (2004) Glutamine availability up-regulates expression of the amino acid transporter protein ASCT2 in HepG2 cells and stimulates the ASCT2 promoter. Biochem J 382:27–32

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campos JA, Aledo JC, del Castillo-Olivares A et al (1998) Involvement of essential cysteine and histidine residues in the activity of isolated glutaminase from tumour cells. Biochim Biophys Acta 1429:275–283

    CAS  PubMed  Google Scholar 

  • Campos-Sandoval JA, López de la Oliva AR, Lobo C et al (2007) Expression of functional human glutaminase in baculovirus system: affinity purification, kinetic and molecular characterization. Int J Biochem Cell Biol 39:765–773

    CAS  PubMed  Google Scholar 

  • Carrascosa JM, Martinez P, Núñez de Castro I (1984) Nitrogen movement between host and tumor in mice inoculated with Ehrlich ascitic tumor cells. Cancer Res 44:3831–3835

    CAS  PubMed  Google Scholar 

  • Castell LM, Bevan SJ, Calder P et al (1994) The role of glutamine in the immune system and in intestinal function in catabolic states. Amino Acids 7:231–243

    CAS  PubMed  Google Scholar 

  • Chen MK, Espat NJ, Bland KI (1993) Influence of progressive tumor growth on glutamine metabolism in skeletal muscle and kidney. Ann Surg 217:655–666

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng T, Sudderth J, Yang C et al (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108:8674–8679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christofk HR, Vander Heiden MG, Harris MH et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    CAS  PubMed  Google Scholar 

  • Coles NW, Johnstone RM (1962) Glutamine metabolism in Ehrlich ascites-carcinoma cells. Biochem J 83:284–291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Collins CL, Wasa M, Souba WW et al (1998) Determinants of glutamine dependence and utilization by normal and tumor-derived breast cell lines. J Cell Physiol 176:166–178

    CAS  PubMed  Google Scholar 

  • Colombo SL, Palacios-Callender M, Frakich N et al (2010) Anaphase-promoting complex/cyclosome-Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes. Proc Natl Acad Sci USA 107:18868–18873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Colombo SL, Palacios-Callender M, Frakich N et al (2011) Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized Hela cells. Proc Natl Acad Sci USA 108:21069–21074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cornu M, Albert V, Hall MN (2013) mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23:53–62

    CAS  PubMed  Google Scholar 

  • Csibi A, Fendt SM, Li C et al (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–854

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70:859–862

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daye D, Wellen KE (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23:362–369

    CAS  PubMed  Google Scholar 

  • De Groot J, Sontheimer H (2011) Glutamate and the biology of gliomas. Glia 59:1181–1189

    PubMed Central  PubMed  Google Scholar 

  • de la Rosa V, Campos-Sandoval JA, Martín-Rufián M (2009) A novel glutaminase isoform in mammalian tissues. Neurochem Int 55:76–84

    PubMed  Google Scholar 

  • DeBerardinis RJ, Cheng T (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–24

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Donadio AC, Lobo C, Tosina M et al (2008) Antisense glutaminase inhibition modifies the O-GlcNAc pattern and flux through the hexosamine pathway in breast cancer cells. J Cell Biochem 103:800–811

    CAS  PubMed  Google Scholar 

  • Dudrick PS, Inoue Y, Espat NJ et al (1993) Na+-dependent glutamine transport in the liver of tumour-bearing rats. Surg Oncol 2:205–215

    CAS  PubMed  Google Scholar 

  • Duran RV, Oppliger W, Robitaille AM et al (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47:349–358

    CAS  PubMed  Google Scholar 

  • Elgadi KM, Meguid RA, Qian M et al (1999) Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics 1:51–62

    CAS  PubMed  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899

    CAS  PubMed  Google Scholar 

  • Fischer JE, Chance WT (1990) Total parenteral nutrition, glutamine, and tumor growth. JPEN J Parenter Enteral Nutr 14:86S–89S

    CAS  PubMed  Google Scholar 

  • Fischer CP, Bode BP, Souba WW (1998) Adaptive alterations in cellular metabolism with malignant transformation. Ann Surg 227:627–634

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giacobbe A, Bongiorno-Borbone L, Bernassola F et al. (2013) p63 regulates glutaminase 2 expression. Cell Cycle 12:1395–1405.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goossens V, Grooten J, Fiers W (1996) The oxidative metabolism of glutamine. A modulator of reactive oxygen intermediate-mediated cytotoxicity of tumor necrosis factor in L929 fibrosarcoma cells. J Biol Chem 271:192–196

    CAS  PubMed  Google Scholar 

  • Ham RG, McKeehan WL (1979) Media and growth requirements. Methods Enzymol 58:44–93

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123:3678–3684

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu W, Zhang C, Wu R et al (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 107:7455–7460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Indiveri C, Abruzzo G, Stipani I et al (1998) Identification and purification of the reconstitutively active glutamine carrier from rat kidney mitochondria. Biochem J 333:285–290

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawamura I, Moldawer LL, Keenan RA et al (1982) Altered amino acid kinetics in rats with progressive tumor growth. Cancer Res 42:824–829

    CAS  PubMed  Google Scholar 

  • Knox WE, Horowitz ML, Friedell GH (1969) The proportionality of glutaminase content to growth rate and morphology of rat neoplasms. Cancer Res 29:669–680

    CAS  PubMed  Google Scholar 

  • Knox WE, Linder M, Friedell GH (1970) A series of transplantable rat mammary tumors with graded differentiation, growth rate, and glutaminase content. Cancer Res 30:283–287

    CAS  PubMed  Google Scholar 

  • Kovacevic Z, McGivan JD (1983) Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 63:547–605

    CAS  PubMed  Google Scholar 

  • Kovacevic Z, Morris HP (1972) The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 32:326–333

    CAS  PubMed  Google Scholar 

  • Kowalchuk JM, Curi R, Newsholme EA (1988) Glutamine metabolism in isolated incubated adipocytes of the rat. Biochem J 249:705–708

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krebs H (1980) Glutamine metabolism in animal body. In: Mora J, Palacios R (eds) Glutamine: metabolism, enzymology and regulation. Academic, New York, pp 319–329

    Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13:472–482

    CAS  PubMed  Google Scholar 

  • Kvamme E, Svenneby G (1960) Effect of anaerobiosis and addition of keto acids on glutamine utilization by Ehrlich ascites-tumor cells. Biochim Biophys Acta 42:187–188

    CAS  PubMed  Google Scholar 

  • Kvamme E, Svenneby G (1961) The effect of glucose on glutamine utilization by Ehrlich ascites tumor cells. Cancer Res 21:92–98

    CAS  PubMed  Google Scholar 

  • La Noue KF, Schoolwerth AC (1979) Metabolite transport in mitochondria. Annu Rev Biochem 48:871–922

    Google Scholar 

  • Lacey JM, Wilmore DW (1990) Is glutamine a conditionally essential amino acid? Nutr Rev 48:297–309

    CAS  PubMed  Google Scholar 

  • Linder-Horowitz M, Knox WE, Morris HP (1969) Glutaminase activities and growth rates of rat hepatomas. Cancer Res 29:1195–1199

    CAS  PubMed  Google Scholar 

  • Liu W, Le A, Hancock C et al (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 109:8983–8988

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lobo C, Ruiz-Bellido MA, Aledo JC et al (2000) Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumour cells. Biochem J 348:257–261

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lora J, Alonso FJ, Segura JA et al (2004) Antisense glutaminase inhibition decreases glutathione antioxidant capacity and increases apoptosis in Ehrlich ascitic tumour cells. Eur J Biochem 271:4298–4306

    CAS  PubMed  Google Scholar 

  • Low SY, Salter M, Knowles RG et al (1993) A quantitative analysis of the control of glutamine catabolism in rat liver cells. Use of selective inhibitors. Biochem J 295:617–624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lundholm K, Byland AC, Holm J et al (1976) Skeletal muscle metabolism in patients with malignant tumor. Eur J Cancer 12:465–473

    CAS  PubMed  Google Scholar 

  • Ma Z, Vosseller K (2013) O-GlcNAc in cancer biology. Amino Acids 45:719–733

    CAS  PubMed  Google Scholar 

  • Marin-Valencia I, Yang C, Mashimo T et al (2012) Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab 15:827–837

    PubMed Central  CAS  PubMed  Google Scholar 

  • Márquez J, Núñez de Castro I (1991) Mouse liver free amino acids during the development of Ehrlich ascites tumour. Cancer Lett 58:221–224

    PubMed  Google Scholar 

  • Márquez J, Sánchez-Jiménez F, Medina MA et al (1989) Nitrogen metabolism in tumor bearing mice. Arch Biochem Biophys 268:667–675

    PubMed  Google Scholar 

  • Márquez J, López de la Oliva AR, Matés JM et al (2006) Glutaminase: a multifaceted protein not only involved in generating glutamate. Neurochem Int 48:465–471

    PubMed  Google Scholar 

  • Martín-Rufián M, Segura JA, Lobo C et al (2006) Identification of genes down-regulated in tumor cells expressing antisense glutaminase mRNA by Differential Display. Cancer Biol Ther 5:54–58

    PubMed  Google Scholar 

  • Martín-Rufián M, Tosina M, Campos-Sandoval JA et al (2012) Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. PLoS One 7:e38380

    PubMed Central  PubMed  Google Scholar 

  • Martín-Rufián M, Nascimento-Gomes R, Higuero A et al (2014) Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. J Mol Med (Berl) 92(3):277–290, PMID: 24276018

    Google Scholar 

  • Matés JM, Pérez-Gómez C, Núñez de Castro I et al (2002) Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 34:439–58

    PubMed  Google Scholar 

  • Matés JM, Segura JA, Campos-Sandoval JA (2009) Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 41:2051–2061

    PubMed  Google Scholar 

  • Matsuno T, Hirai H (1989) Glutamine synthetase and glutaminase activities in various hepatoma cells. Biochem Int 19:219–225

    CAS  PubMed  Google Scholar 

  • Matsuno T, Satoh T (1986) Glutamine metabolism in the avian host bearing transplantable hepatomatous growth induced by MC-29 virus. Int J Biochem 18:187–189

    CAS  PubMed  Google Scholar 

  • Matsuno T, Satoh T, Suzuki H (1986) Prominent glutamine oxidation activity in mitochondria of avian transplantable hepatoma induced by MC-29 virus. J Cell Physiol 128:397–401

    CAS  PubMed  Google Scholar 

  • Mazurek S, Boschek CB, Hugo F et al (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15:300–308

    CAS  PubMed  Google Scholar 

  • McGivan JD, Bungard CI (2007) The transport of glutamine into mammalian cells. Front Biosci 12:874–882

    CAS  PubMed  Google Scholar 

  • McKeehan WL (1982) Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 6:635–650

    CAS  PubMed  Google Scholar 

  • McKeehan WL (1986) Glutaminolysis in animal cells. In: Morgan MJ (ed) Carbohydrate metabolism in cultured cells. Plenum Press, New York, pp 111–150

    Google Scholar 

  • Medina MA, Núñez de Castro I (1990) Glutaminolysis and glycolysis interactions in proliferant cells. Int J Biochem 22:681–683

    CAS  PubMed  Google Scholar 

  • Medina MA, Márquez J, Núñez de Castro I (1992) Interchange of amino acids between tumor and host. Biochem Med Metab Biol 48:1–7

    CAS  PubMed  Google Scholar 

  • Mider GB (1951) Some aspects of nitrogen and energy metabolism in cancerous subjects: a review. Cancer Res 11:821–829.

    CAS  PubMed  Google Scholar 

  • Molina M, Segura JA, Aledo JC et al (1995) Glutamine transport by vesicles isolated from tumour-cell mitochondrial inner membrane. Biochem J 308:629–633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moncada S, Higgs EA, Colombo SL (2012) Fulfilling the metabolic requirements for cell proliferation. Biochem J 446:1–7

    CAS  PubMed  Google Scholar 

  • Moreadith RW, Lehninger AL (1984) The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. J Biol Chem 259:6215–6221

    CAS  PubMed  Google Scholar 

  • Müller F (1889) Stoffwechseluntersuchungen bei Krebskranken. Ztschr f klin Med 16:496–549.

    Google Scholar 

  • Neermann J, Wagner R (1996) Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol 166:152–169

    CAS  PubMed  Google Scholar 

  • Nicklin P, Bergman P, Zhang B et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olalla L, Gutiérrez A, Campos JA et al. (2002) Nuclear localization of L-glutaminase in mammalian brain. J Biol Chem 277:38939–38944.

    CAS  PubMed  Google Scholar 

  • Pérez-Gómez C, Campos-Sandoval JA, Alonso FJ et al (2005) Co-expression of glutaminase K and L isoenzymes in human tumour cells. Biochem J 386:535–542

    PubMed Central  PubMed  Google Scholar 

  • Pine MJ, Kim U, Ip C (1982) Free amino acid pools of rodent mammary tumors. J Natl Cancer Inst 69:729–735

    CAS  PubMed  Google Scholar 

  • Porter LD, Ibrahim H, Taylor L et al (2002) Complexity and species variation of the kidney-type glutaminase gene. Physiol Genomics 9:157–166

    CAS  PubMed  Google Scholar 

  • Quesada AR, Medina MA, Márquez J et al (1988) Contribution by host tissues to circulating glutamine in mice inoculated with Ehrlich ascites tumor cells. Cancer Res 48:1551–1553

    CAS  PubMed  Google Scholar 

  • Rathore MG, Saumet A, Rossi J-F et al (2012) The NF-Κb member p65 controls glutamine metabolism through miR-23a. Int J Biochem Cell Biol 44:1448–1456

    CAS  PubMed  Google Scholar 

  • Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254:2669–76

    CAS  PubMed  Google Scholar 

  • Rivera S, Azcón-Bieto J, López-Soriano FJ et al (1988) Amino acid metabolism in tumour-bearing mice. Biochem J 249:443–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sastrasinh S, Sastrasinh M (1989) Glutamine transport in submitochondrial particles. Am J Physiol 257:F1050–F1058

    CAS  PubMed  Google Scholar 

  • Sauer LA, Dauchy RT (1983) Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats. Cancer Res 43:3497–3503

    CAS  PubMed  Google Scholar 

  • Sauer LA, Stayman JW 3rd, Dauchy RT (1982) Amino acid, glucose, and lactic acid utilization in vivo by rat tumors. Cancer Res 42:4090–4097

    CAS  PubMed  Google Scholar 

  • Sebolt JS, Weber G (1984) Negative correlation of L-glutamine concentration with proliferation rate in rat hepatomas. Life Sci 34:301–306

    CAS  PubMed  Google Scholar 

  • Segura JA, Medina MA, Alonso FJ et al (1989) Glycolysis and glutaminolysis in perifused Ehrlich ascites tumour cells. Cell Biochem Funct 7:7–10

    CAS  PubMed  Google Scholar 

  • Segura JA, Barbero LG, Márquez J (1997) Early tumor effect on splenic Th lymphocytes in mice. FEBS Lett 414:1–6

    CAS  PubMed  Google Scholar 

  • Segura JA, Ruiz-Bellido MA, Arenas M et al (2001) Ehrlich ascites tumor cells expressing anti-sense glutaminase mRNA lose their capacity to evade the mouse immune system. Int J Cancer 91:379–384

    CAS  PubMed  Google Scholar 

  • Shapot VS (1979) On the multiform relationships between the tumor and the host. Adv Cancer Res 39:89–150

    Google Scholar 

  • Shapot VS (1980) Manifestations and mechanisms of systemic effect of tumours on the host. In: Biochemical aspects of tumor growth. MIR Publishers, Moscow, pp 124–175

    Google Scholar 

  • Simpson NE, Tryndyak VP, Pogribna M et al (2012) Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene expression and alters cancer cell phenotype. Epigenetics 7:1413–1420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Souba WW (1993) Glutamine and cancer. Ann Surg 218:715–728

    PubMed Central  CAS  PubMed  Google Scholar 

  • Souba WW, Strebel FR, Bull JM et al (1988) Interorgan glutamine metabolism in the tumor-bearing rat. J Surg Res 44:720–726

    CAS  PubMed  Google Scholar 

  • Spittler A, Oehler R, Goetzinger P et al (1997) Low glutamine concentrations induce phenotypical and functional differentiation of U937 myelomonocytic cells. J Nutr 127:2151–2157

    CAS  PubMed  Google Scholar 

  • Sri-Pathmanathan RM, Braddock P, Brindle KM (1990) 31P-NMR studies of glucose and glutamine metabolism in cultured mammalian cells. Biochim Biophys Acta 1051:131–137

    CAS  PubMed  Google Scholar 

  • Suzuki S, Tanaka T, Poyurovsky MV et al (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 107:7461–7466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szeliga M, Sidoryk M, Matyja E et al (2005) Lack of expression of the liver-type glutaminase (LGA) mRNA in human malignant gliomas. Neurosci Lett 374:171–173

    CAS  PubMed  Google Scholar 

  • Szeliga M, Obara-Michlewska M, Matyja E et al (2009) Transfection with liver-type glutaminase (LGA) cDNA alters gene expression and reduces viability, migration and proliferation of T98G glioma cells. Glia 57:1014–1023

    PubMed  Google Scholar 

  • Szeliga M, Bogacińska-Karaś M, Różycka A et al (2013) Silencing of GLS and overexpression of GLS2 genes cooperate in decreasing the proliferation and viability of glioblastoma cells. Tumour Biol 35(3):1855–1862, PMID: 24096582

    PubMed Central  PubMed  Google Scholar 

  • Tennant DA, Durán RV, Boulahbel H et al (2009) Metabolic transformation in cancer. Carcinogenesis 30:1269–1280

    CAS  PubMed  Google Scholar 

  • Thangavelu K, Pan CQ, Karlberg T et al (2012) Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc Natl Acad Sci USA 109:7705–7710

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turner A, McGivan JD (2003) Glutaminase isoform expression in cell lines derived from human colorectal adenomas and carcinomas. Biochem J 370:403–408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turowski GA, Rashid Z, Hong F et al (1994) Glutamine modulates phenotype and stimulates proliferation in human colon cancer cell lines. Cancer Res 54:5974–5980

    CAS  PubMed  Google Scholar 

  • Unterluggauer H, Mazurek S, Lener B et al. (2008) Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 9:247–259

    CAS  PubMed  Google Scholar 

  • van den Heuvel AP, Jing J, Wooster RF et al (2012) Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biol Ther 13:1185–1194

    PubMed Central  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    PubMed Central  CAS  PubMed  Google Scholar 

  • Voet D, Voet JG (1995) Biochemistry, 2nd edn. Wiley, New York, pp 464–470

    Google Scholar 

  • Vousden KH (2010) Alternative fuel- another role for p53 in the regulation of metabolism. Proc Natl Acad Sci USA 107:7717–7718

    Google Scholar 

  • Wang J-B, Erickson JW, Fuji R et al (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weber G (1977) Enzymology of cancer cells (second of two parts). N Engl J Med 296:541–551

    CAS  PubMed  Google Scholar 

  • Wellen KE, Hatzivassilou G, Sachdeva UM et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wellen KE, Lu C, Mancuso A et al (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24:2784–2799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson KF, Erickson JW, Antonyak MA et al (2013) Rho GTPases and their role in cancer metabolism. Trends Mol Med 19:74–82

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105:18782–18787

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiang L, Xie G, Liu C et al (2013) Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim Biophys Acta 1833:2996–3005

    CAS  PubMed  Google Scholar 

  • Yuneva M (2008) Finding an "Achilles' heel" of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle 7:2083–9

    CAS  PubMed  Google Scholar 

  • Yuneva M, Zamboni N, Oefner P et al (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178:93–105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yuneva M, Fan TWM, Allen TD (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15:157–170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zachara NE, Hart GW (2004) O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta 1673:13–28

    CAS  PubMed  Google Scholar 

  • Zielke HR, Sumbilla CM, Sevdalian DA et al (1980) Lactate: a major product of glutamine metabolism by human diploid fibroblasts. J Cell Physiol 104:433–441

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to everybody in the Canceromics group at University of Málaga for creating most of the own work described in this chapter. This work was supported by grants SAF2010-17573 from the Ministry of Science and Innovation of Spain, Excellence Grant CVI-6656 from the regional Andalusian government (Junta de Andalusia), and Grant RD06/1012 of the RTA RETICS (Red Temática de Investigación Cooperativa en Salud) network from the Spanish Health Institute Carlos III. We also wish to thank Prof. G. Lubec for the important support obtained from his Neuroproteomics lab (Vienna) and to Dr. H. Leban for thoughtful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Márquez, J., Matés, J.M., Alonso, F.J., Martín-Rufián, M., Lobo, C., Campos-Sandoval, J.A. (2015). Canceromics Studies Unravel Tumor’s Glutamine Addiction After Metabolic Reprogramming. In: Mazurek, S., Shoshan, M. (eds) Tumor Cell Metabolism. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1824-5_12

Download citation

Publish with us

Policies and ethics