Skip to main content

Current Status and Future of Polio Vaccines and Vaccination

  • Chapter
  • First Online:
Novel Technologies for Vaccine Development

Abstract

The history of polio vaccines and their use illustrates the concept of evolution of vaccines driven by changing epidemiological and socioeconomic conditions. The development of two vaccines against poliomyelitis—inactivated Salk vaccine (IPV) and live oral Sabin vaccine (OPV)—is among the most consequential achievements of prophylactic medicine of the past century. Each with their own strengths and weaknesses, they were used over the past 50 years in different settings and different regimens and combinations. This resulted in virtual elimination of the disease in almost the entire world with the exception of a few countries. Continuation of the eradication campaign coordinated by WHO may soon result in complete cessation of wild poliovirus transmission, and poliovirus may join smallpox virus in the club of extinct pathogens. However, unlike smallpox vaccination that was stopped after the interruption of virus circulation, vaccination against poliomyelitis will have to continue into the foreseeable future, due to significant differences in the nature and epidemiology of the viruses. This chapter reviews the reasons for the need to maintain high population immunity against polioviruses, makes the case for developing a new generation of polio vaccines, and discusses their desirable properties as well as new vaccine technologies that could be used to create polio vaccines for the post-eradication environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agol VI (1997) Recombination and other genomic rearrangements in picornaviruses. Semin Virol 8:77–84

    CAS  Google Scholar 

  • Agol VI (2006) Vaccine-derived polioviruses. Biologicals 34(2):103–108

    CAS  PubMed  Google Scholar 

  • Agol VI, Chumakov K et al (2005) Don’t drop current vaccine until we have new ones. Nature 435(7044):881

    CAS  PubMed  Google Scholar 

  • Alexander LN, Seward JF et al (2004) Vaccine policy changes and epidemiology of poliomyelitis in the United States. JAMA 292(14):1696–1701

    CAS  PubMed  Google Scholar 

  • Andrus JK, de Quadros C et al (1992) Screening of cases of acute flaccid paralysis for poliomyelitis eradication: ways to improve specificity. Bull World Health Organ 70:591–596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anis E, Kopel E et al (2013) Insidious reintroduction of wild poliovirus into Israel, 2013. Euro Surveill 18(38):1–5

    Google Scholar 

  • Arita I, Francis DP (2011) Safe landing for global polio eradication: a perspective. Vaccine 29(48):8827–8834

    PubMed  Google Scholar 

  • Arya SC, Agarwal N (2011) Bivalent live poliovirus vaccine: a blessing or a curse. Hum Vaccin 7(7):800

    PubMed  Google Scholar 

  • Badham J (1834–35) Paralysis in childhood; four remarkable cases of suddenly induced paralysis in the extremities, occurring in children, without any apparent cerebral or cerebro-spinal lesion. Lond Med Gazzette 17:215

    Google Scholar 

  • Baker AB (1949) Bulbar poliomyelitis: its mechanism and treatment. Am J Med 6:614–619

    CAS  PubMed  Google Scholar 

  • Baldwin SL, Fox CB et al (2011) Increased potency of an inactivated trivalent polio vaccine with oil-in-water emulsions. Vaccine 29(4):644–649

    CAS  PubMed  Google Scholar 

  • Blomqvist S, Savolainen C et al (2004) Characterization of a highly evolved vaccine-derived poliovirus type 3 isolated from sewage in Estonia. J Virol 78(9):4876–4883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blume SS (2005) Lock in, the state and vaccine development: lessons from the history of the polio vaccines. Res Policy 34:159–173

    Google Scholar 

  • Bodian D, Morgan IM et al (1949) Differentiation of types of poliomyelitis viruses. III. The grouping of fourteen strains into three basic immunologic types. Am J Hyg 49:234–245

    CAS  PubMed  Google Scholar 

  • Brodie M (1934) Active immunization in monkeys against poliomyelitis with germicidally inactivated virus. Science 79:594–595

    CAS  PubMed  Google Scholar 

  • Brodie M, Park WH (1935) Active immunization against poliomyelitis. J Am Med Assoc 105:9

    Google Scholar 

  • Burnet FM, Macnamara J (1931) Immunological differences between strains of poliomyelitic virus. Br J Exp Pathol 12:57–61

    PubMed Central  Google Scholar 

  • Burns CC, Shaw J et al (2006) Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol 80(7):3259–3272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burns CC, Campagnoli R et al (2009) Genetic inactivation of poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid region codons. J Virol 83(19):9957–9969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burns CC, Shaw J et al (2013) Multiple independent emergences of type 2 vaccine-derived polioviruses during a large outbreak in northern Nigeria. J Virol 87(9):4907–4922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cadorna-Carlos J, Vidor E et al (2012) Randomized controlled study of fractional doses of inactivated poliovirus vaccine administered intradermally with a needle in the Philippines. Int J Infect Dis 16(2):e110–e116

    PubMed  Google Scholar 

  • Cello J, Paul AV et al (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297:1016–1018

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2001) Circulation of a type 2 vaccine-derived poliovirus – Egypt, 1982–1993. Morb Mortal Wkly Rep 50:41–42, 51

    Google Scholar 

  • Centers for Disease Control and Prevention (2009) Update on vaccine-derived polioviruses–worldwide, January 2008–June 2009. Morb Mortal Wkly Rep 58(36):1002–1006

    Google Scholar 

  • Centers for Disease Control and Prevention (2012) Update on vaccine-derived polioviruses–worldwide, April 2011-June 2012. MMWR Morb Mortal Wkly Rep 61:741–746

    Google Scholar 

  • Cernáková B, Sobotová Z et al (2005) Isolation of vaccine-derived polioviruses in the Slovak Republic. Eur J Clin Microbiol Infect Dis 24:438–439

    PubMed  Google Scholar 

  • Chang T-W, Weinstein L et al (1966) Paralytic poliomyelitis in a child with hypogammaglobulinemia: probable implication of type 1 vaccine strain. Pediatrics 37:630–636

    CAS  PubMed  Google Scholar 

  • Chen Z, Chumakov K et al (2011) Chimpanzee-human monoclonal antibodies for treatment of chronic poliovirus excretors and emergency postexposure prophylaxis. J Virol 85(9):4354–4362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Fischer ER et al (2013) Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor. Proc Natl Acad Sci U S A 110(50):20242–20247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chumakov MP (1960) The effect of mass peroral immunisation by live vaccines from Sabin strains on the epidemiological process of poliomyelitis. J Hyg Epidemiol Microbiol Immunol 4:287–288

    CAS  PubMed  Google Scholar 

  • Chumakov K, Kew OM (2010) The poliovirus eradication initiative. In: Ehrenfeld E, Domingo E, Roos RP (eds) The picornaviruses. ASMscience, Washington, DC, pp 449–459

    Google Scholar 

  • Chumakov K, Dragunsky E et al (2001) Inactivated vaccines based on alternatives to wild-type seed virus. Dev Biol (Basel) 105:171–177

    CAS  Google Scholar 

  • Chumakov K, Ehrenfeld E et al (2007) Vaccination against polio should not be stopped. Nat Rev Microbiol 5(12):952–958

    CAS  PubMed  Google Scholar 

  • Coleman JR, Papamichail D et al (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320(5884):1784–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collett MS, Neyts J et al (2008) A case for developing antiviral drugs against polio. Antiviral Res 79(3):179–187

    CAS  PubMed  Google Scholar 

  • Combelas N, Holmblat B et al (2011) Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence. Viruses 3(8):1460–1484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper PD (1977) Genetics of picornaviruses. In: Fraenkel-Conrat H, Wagner R (eds) Comprehensive virology, vol 9. Plenum, New York, NY, pp 133–207

    Google Scholar 

  • Cornil V (1863) Paralysie infantile; cancer les seins; autopsie; altĂ©rations de la moelle Ă©pinière, des nerfs et des muscles; gĂ©nĂ©ralisation du cancer. C R Soc Biol (Paris) 5:187

    Google Scholar 

  • Davis LE, Bodian D et al (1977) Chronic progressive poliomyelitis secondary to vaccination of an immunodeficient child. N Engl J Med 297(5):241–245

    CAS  PubMed  Google Scholar 

  • de Quadros CA, Andrus JK et al (1992) Polio eradication from the Western Hemisphere. Annu Rev Public Health 13:239–252

    PubMed  Google Scholar 

  • de Quadros CA, Hersh BS et al (1997) Eradication of wild poliovirus from the Americas: acute flaccid paralysis surveillance, 1988-1995. J Infect Dis 175(Suppl 1):S37–S42

    PubMed  Google Scholar 

  • del Pilar Martin M, Weldon WC et al (2012) Local response to microneedle-based influenza immunization in the skin. MBio 3(2):e00012-12

    PubMed Central  PubMed  Google Scholar 

  • Dobrikova EY, Goetz C et al (2012) Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol 86(5):2750–2759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doi Y, Abe S et al (2001) Progress with inactivated poliovirus vaccines derived from the Sabin strains. Dev Biol 105:163–169

    CAS  Google Scholar 

  • Dowdle WR (1998) The principles of disease elimination and eradication. Bull World Health Organ 76(Suppl 2):22–25

    PubMed Central  PubMed  Google Scholar 

  • Dowdle WR, Birmingham ME (1997) The biologic principles of poliovirus eradication. J Infect Dis 175(Suppl 1):S286–S292

    PubMed  Google Scholar 

  • Dowdle W, Kew O (2006) Vaccine-derived polioviruses: is it time to stop using the word “rare”? J Infect Dis 194:539–541

    PubMed  Google Scholar 

  • Dowdle WR, de Gourville E et al (2003) Polio eradication: the OPV paradox. Rev Med Virol 13:277–291

    PubMed  Google Scholar 

  • Dragunsky EM, Ivanov AP et al (2004) Evaluation of immunogenicity and protective properties of inactivated poliovirus vaccines: a new surrogate method for predicting vaccine efficacy. J Infect Dis 190(8):1404–1412

    CAS  PubMed  Google Scholar 

  • Dragunsky EM, Ivanov AP et al (2006) Further development of a new transgenic mouse test for the evaluation of the immunogenicity and protective properties of inactivated poliovirus vaccine. J Infect Dis 194(6):804–807

    CAS  PubMed  Google Scholar 

  • Edens C, Collins ML et al (2013) Measles vaccination using a microneedle patch. Vaccine 31(34):3403–3409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehrenfeld E, Glass RI et al (2008) Immunisation against poliomyelitis: moving forward. Lancet 371(9621):1385–1387

    PubMed  Google Scholar 

  • Ehrenfeld E, Modlin J et al (2009) Future of polio vaccines. Expert Rev Vaccines 8(7):899–905

    PubMed  Google Scholar 

  • Enders JF, Weller TH et al (1949) Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissue. Science 109:85–87

    CAS  PubMed  Google Scholar 

  • Enders JF, Weller TH et al (1952) Alterations in pathogenicity for monkeys of Brunhilde strain of poliovirus following cultivation in human tissues. Fed Proc 11:467

    Google Scholar 

  • Feigin RD, Guggenheim MA et al (1971) Vaccine-related paralytic poliomyelitis in an immunodeficient child. J Pediatr 79(4):642–647

    CAS  PubMed  Google Scholar 

  • Flexner S, Clark PF (1912–13) A note on the mode of infection in epidemic poliomyelitis. Proc Soc Exp Biol Med 10:1

    Google Scholar 

  • Flexner S, Lewis PA (1909) The transmission of poliomyelitis to monkeys. J Am Med Assoc 53:1639

    Google Scholar 

  • Flexner S, Lewis PA (1910) Experimental poliomyelitis in monkeys; active immunization and passive serum protection. J Am Med Assoc 54:1780

    Google Scholar 

  • Frost WH (1913) Epidemiologic studies of acute anterior poliomyelitis. Hyg Lab Bull, No 90

    Google Scholar 

  • Furione M, Guillot S et al (1993) Polioviruses with natural recombinant genomes isolated from vaccine-associated poliomyelitis. Virology 196:199–208

    CAS  PubMed  Google Scholar 

  • Grassly NC, Fraser C et al (2006) New strategies for the elimination of polio from India. Science 314:1150–1153

    CAS  PubMed  Google Scholar 

  • Grassly NC, Wenger J et al (2007) Protective efficacy of a monovalent oral type 1 poliovirus vaccine: a case-control study [see comment][erratum appears in Lancet. 2007 May 26;369(9575):1790]. Lancet 369(9570):1356–1362

    CAS  PubMed  Google Scholar 

  • Gromeier M, Alexander L et al (1996) Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Nat Acad Sci U S A 93:2370–2375

    CAS  Google Scholar 

  • Guest S, Pilipenko E et al (2004) Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. J Virol 78(20):11097–11107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutman GA, Hatfield GW (1989) Nonrandom utilization of codon pairs in Escherichia coli. Proc Natl Acad Sci U S A 86(10):3699–3703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammon WM, Coriell LI et al (1952) Evaluation of Red Cross gamma globulin as a prophylactic agent for poliomyelitis. J Am Med Assoc 150:139

    Google Scholar 

  • Hampton L (2009) Albert Sabin and the coalition to eliminate polio from the Americas. Am J Public Health 99(1):34–44

    PubMed Central  PubMed  Google Scholar 

  • Heine J (1840) Beobachtungen ĂĽber Lähmungszustände der unteren Extremitäten und deren Behandlung. Köhler, Stuttgart

    Google Scholar 

  • Hidalgo S, Garcia Erro M et al (2003) Paralytic poliomyelitis caused by a vaccine-derived polio virus in an antibody-deficient Argentinean child. Pediatr Infect Dis J 22(6):570–572

    PubMed  Google Scholar 

  • Hiraishi Y, Nandakumar S et al (2011) Bacillus Calmette-Guerin vaccination using a microneedle patch. Vaccine 29(14):2626–2636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanov AP, Dragunsky EM et al (2006) 1,25-dihydroxyvitamin d3 enhances systemic and mucosal immune responses to inactivated poliovirus vaccine in mice. J Infect Dis 193(4):598–600

    CAS  PubMed  Google Scholar 

  • Jacobi M (1874–75) Pathogeny of infantile paralysis. Am J Obstet 7:1

    Google Scholar 

  • John TJ, Vashishtha VM (2012) Path to polio eradication in India: a major milestone. Indian Pediatr 49(2):95–98

    PubMed  Google Scholar 

  • John TJ, Jain H et al (2011) Monovalent type 1 oral poliovirus vaccine among infants in India: report of two randomized double-blind controlled clinical trials. Vaccine 29(34):5793–5801

    CAS  PubMed  Google Scholar 

  • Jorba J, Campagnoli R et al (2008) Calibration of multiple poliovirus molecular clocks covering an extended evolutionary range. J Virol 82(9):4429–4440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kauder SE, Racaniello VR (2004) Poliovirus tropism and attenuation are determined after internal ribosome entry. J Clin Investig 113(12):1743–1753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaura G, Biswas T (2012) India reaches milestone of no cases of wild poliovirus for 12 months. BMJ 344:e1328

    PubMed  Google Scholar 

  • Kessel JF, Pait CF (1949) Differentiation of three groups of poliomyelitis virus. Proc Soc Exp Biol Med 70:315–316

    CAS  PubMed  Google Scholar 

  • Kew OM, Nottay BK et al (1990) Molecular epidemiology of wild poliovirus transmission. In: Kurstak E, Marusyk RG, Murphy FA, Van Regenmortel MHV (eds) Applied virology research, vol 2. Plenum, New York, NY, pp 199–221

    Google Scholar 

  • Kew O, Morris-Glasgow V et al (2002) Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science 296:356–359

    CAS  PubMed  Google Scholar 

  • Kew OM, Wright PF et al (2004) Circulating vaccine-derived polioviruses: current state of knowledge. Bull World Health Organ 82:16–23

    PubMed Central  PubMed  Google Scholar 

  • Kim YC, Song JM et al (2012) Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur J Pharm Biopharm 81(2):239–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koprowski H (1958) Vaccination with modified active viruses. Poliomyelitis. In: Papers and discussion presented at the fourth international poliomyelitis conference. J. B. Lippincott, Philadelphia, PA

    Google Scholar 

  • Koprowski H, Jervis GA et al (1952) Immune responses in human volunteers upon oral administration of a rodent-adapted strain of poliomyelitis virus. Am J Hyg 55:108–126

    CAS  PubMed  Google Scholar 

  • Korotkova EA, Park R et al (2003) Retrospective analysis of a local cessation of vaccination against poliomyelitis: a possible scenario for the future. J Virol 77:12460–12465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer SD, Aycock WL et al (1932) Convalescent serum therapy in preparalytic poliomyelitis. N Engl J Med 206:432

    Google Scholar 

  • Landsteiner K, Popper E (1909) Ăśbertragung der Poliomyelitis acuta auf Affen. Zeitschrift fĂĽr Immunitätsforshung 2:377–390

    Google Scholar 

  • Leake JP (1935) Poliomyelitis following vaccination against the disease. J Am Med Assoc 105:2152

    Google Scholar 

  • Lopez C, Biggar WD et al (1974) Nonparalytic poliovirus infections in patients with severe combined immunodeficiency disease. J Pediatr 84(4):497–502

    CAS  PubMed  Google Scholar 

  • Macadam AJ, Ferguson G et al (2001) Live-attenuated strains of improved genetic stability. Dev Biol 105:179–187

    CAS  Google Scholar 

  • Macadam AJ, Ferguson G et al (2006) Rational design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes: relevance to poliomyelitis eradication. J Virol 80(17):8653–8663

    CAS  PubMed Central  PubMed  Google Scholar 

  • MartĂ­n J, Odoom K et al (2004) Long-term excretion of vaccine-derived poliovirus by a healthy child. J Virol 78:13839–13847

    PubMed Central  PubMed  Google Scholar 

  • Minor P (2001) Characteristics of poliovirus strains from long-term excretors with primary immunodeficiencies. Dev Biol 105:75–80

    CAS  Google Scholar 

  • Minor P (2009) Vaccine-derived poliovirus (VDPV): impact on poliomyelitis eradication. Vaccine 27(20):2649–2652

    PubMed  Google Scholar 

  • Mueller S, Coleman JR et al (2010) Live attenuated influenza virus vaccines by computer-aided rational design. Nat Biotechnol 28(7):723–726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nasr El-Sayed N, El-Gamal Y et al (2008) Randomized controlled clinical trial of monovalent type 1 oral poliovirus vaccine. N Engl J Med 359:1655–1665

    PubMed  Google Scholar 

  • Nathanson N, Langmuir AD (1963a) The cutter incident. Poliomyelitis following formaldehyde-inactivated poliovirus vaccination in the United States in the spring of 1955. I. Background. Am J Hyg 78:16–28

    CAS  PubMed  Google Scholar 

  • Nathanson N, Langmuir AD (1963b) The Cutter incident. Poliomyelitis following formaldehyde-inactivated poliovirus vaccination in the United States in the spring of 1955. II. Relationship of poliomyelitis to Cutter vaccine. Am J Hyg 78:29–60

    CAS  PubMed  Google Scholar 

  • Nathanson N, Langmuir AD (1963c) The Cutter incident. Poliomyelitis following formaldehyde-inactivated poliovirus vaccination in the United States in the spring of 1955. III. Comparison of the clinical character of vaccinated and contact cases occurring after use of high rate lots of Cutter vaccine. Am J Hyg 78:61–81

    Google Scholar 

  • Nelson KS, Janssen JM et al (2012) Intradermal fractional dose inactivated polio vaccine: a review of the literature. Vaccine 30(2):121–125

    PubMed  Google Scholar 

  • Nottay BK, Kew OM et al (1981) Molecular variation of type 1 vaccine-related and wild polioviruses during replication in humans. Virology 108:405–423

    CAS  PubMed  Google Scholar 

  • O’Reilly KM, Durry E et al (2012) The effect of mass immunisation campaigns and new oral poliovirus vaccines on the incidence of poliomyelitis in Pakistan and Afghanistan, 2001-11: a retrospective analysis. Lancet 380(9840):491–498

    PubMed Central  PubMed  Google Scholar 

  • Offit PA (2005) The Cutter incident: how America’s first polio vaccine led to the growing vaccine crisis. Yale University Press, New Haven

    Google Scholar 

  • Pallansch MA, Oberste MS et al (2013) Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM (eds) Fields virology, vol 1. Lippincott Williams & Wilkins, Philadelphia, PA, pp 490–530

    Google Scholar 

  • Patriarca PA, Wright PF et al (1991) Factors affecting the immunogenicity of oral poliovirus vaccine in developing countries: review. Rev Infect Dis 13:926–939

    CAS  PubMed  Google Scholar 

  • Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci U S A 100(12):7289–7294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porta C, Kotecha A et al (2013) Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. PLoS Pathog 9(3):e1003255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Putnam JJ, Taylor EW (1893) Is acute poliomyelitis unusually prevalent this season. Bost Med Surg J 129:509–519

    Google Scholar 

  • Racaniello VR (2013) Picornaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 1. Lippincott Williams & Wilkins, Philadelphia, PA, pp 453–489

    Google Scholar 

  • Resik S, Tejeda A et al (2010) Randomized controlled clinical trial of fractional doses of inactivated poliovirus vaccine administered intradermally by needle-free device in Cuba. J Infect Dis 201(9):1344–1352

    PubMed  Google Scholar 

  • Resik S, Tejeda A et al (2013) Priming after a fractional dose of inactivated poliovirus vaccine. N Engl J Med 368(5):416–424

    CAS  PubMed  Google Scholar 

  • Roivainen M, Blomqvist S et al (2010) Highly divergent neurovirulent vaccine-derived polioviruses of all three serotypes are recurrently detected in Finnish sewage. Euro surveill 15(19):pii/19566

    Google Scholar 

  • Rowe A, Burlison J et al (2001) Functional formation of domain V of the poliovirus noncoding region: significance of unpaired bases. Virology 289(1):45–53

    CAS  PubMed  Google Scholar 

  • Runckel C, Westesson O et al (2013) Identification and manipulation of the molecular determinants influencing poliovirus recombination. PLoS Pathog 9(2):e1003164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabin AB (1954a) Current status of research on vaccination against poliomyelitis. J Mich State Med Soc 53(9):985, passim

    CAS  PubMed  Google Scholar 

  • Sabin AB (1954b) On the trail of avirulent viruses for immunization against poliomyelitis. Bibl Paediatr 58:429–436

    CAS  PubMed  Google Scholar 

  • Sabin AB (1955a) Behavior of chimpanzee avirulent poliomyelitis viruses in experimentally infected human volunteers. Am J Med Sci 230(1):1–8

    CAS  PubMed  Google Scholar 

  • Sabin AB (1955b) Characteristics and genetic potentialities of experimentally produced and naturally occurring variants of poliomyelitis virus. Ann NY Acad Sci 61(4):924–938, discussion 938–929

    CAS  PubMed  Google Scholar 

  • Sabin AB (1961a) Eradication of poliomyelitis. Ann Intern Med 55:353–357

    CAS  PubMed  Google Scholar 

  • Sabin AB (1961b) Poliomyelitis in Brazil, Uruguay, Argentina and Chile. Data of importance in planning for elimination of the disease. Yale J Biol Med 34:399–420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabin AB (1961c) Poliomyelitis incidence in the Soviet Union in 1960. JAMA 176:231–232

    CAS  PubMed  Google Scholar 

  • Sabin AB (1965) Oral poliovirus vaccine. History of its development and prospects for eradication of poliomyelitis. JAMA 194(8):872–876

    CAS  PubMed  Google Scholar 

  • Sanders BP, Edo-Matas D et al (2013) PER.C6((R)) cells as a serum-free suspension cell platform for the production of high titer poliovirus: a potential low cost of goods option for world supply of inactivated poliovirus vaccine. Vaccine 31(5):850–856

    CAS  PubMed  Google Scholar 

  • Shimizu H (2012) Poliovirus vaccine. Uirusu 62(1):57–65

    PubMed  Google Scholar 

  • Soonawala D, Verdijk P et al (2013) Intradermal fractional booster dose of inactivated poliomyelitis vaccine with a jet injector in healthy adults. Vaccine 31(36):3688–3694

    CAS  PubMed  Google Scholar 

  • Tano Y, Shimizu H et al (2007) Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains. Vaccine 25(41):7041–7046

    CAS  PubMed  Google Scholar 

  • Toyoda H, Yin J et al (2007) Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res 67(6):2857–2864

    CAS  PubMed  Google Scholar 

  • Underwood M (1789) A treatise on diseases of children with general directions for the management of infants from the birth. Mathews, London

    Google Scholar 

  • van Wezel AL, van Steenis G et al (1984) Inactivated poliovirus vaccine: current production methods and new developments. Rev Infect Dis 6(Suppl 2):S335–S340

    PubMed  Google Scholar 

  • Verdijk P, Rots NY et al (2011) Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains. Expert Rev Vaccines 10(5):635–644

    CAS  PubMed  Google Scholar 

  • Verdijk P, Rots NY et al (2013) Safety and immunogenicity of inactivated poliovirus vaccine based on Sabin strains with and without aluminum hydroxide: a phase I trial in healthy adults. Vaccine 31(47):5531–5536

    CAS  PubMed  Google Scholar 

  • Vignuzzi M, Stone JK et al (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439(7074):344–348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vignuzzi M, Wendt E et al (2008) Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med 14(2):154–161

    CAS  PubMed  Google Scholar 

  • Wassilak S, Pate MA et al (2011) Outbreak of type 2 vaccine-derived poliovirus in Nigeria: emergence and widespread circulation in an underimmunized population. J Infect Dis 203(7):898–909

    PubMed Central  PubMed  Google Scholar 

  • Westdijk J, Brugmans D et al (2011) Characterization and standardization of Sabin based inactivated polio vaccine: proposal for a new antigen unit for inactivated polio vaccines. Vaccine 29(18):3390–3397

    CAS  PubMed  Google Scholar 

  • Westdijk J, Koedam P et al (2013) Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains. Vaccine 31(9):1298–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  • WHO (2013) Polio Eradication & Endgame Strategic Plan 2013-2018. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2004) Global action plan for laboratory containment of wild polioviruses, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Wright PF, Hatch MH et al (1977) Vaccine-associated poliomyelitis in a child with sex-linked agammaglobulinemia. J Pediatr 91:408–412

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author is grateful to Ellie Ehrenfeld for helpful discussions and critical reading of the manuscript. Opinions expressed in this chapter are solely of its author and do not necessarily represent the official position of the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Chumakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Chumakov, K. (2014). Current Status and Future of Polio Vaccines and Vaccination. In: Lukashevich, I., Shirwan, H. (eds) Novel Technologies for Vaccine Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1818-4_4

Download citation

Publish with us

Policies and ethics