Skip to main content

Sphingolipids in Acute Lung Injury

  • Chapter
  • First Online:
Sphingolipids in Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Acute lung injury is a life-threatening disease that is characterized by pulmonary inflammation, loss of barrier functions, and hypoxemia. Sphingolipids are critically involved in the disease process that they can both expedite and extenuate: They expedite inflammation by promoting chemotaxis (neutral sphingomyelinase), increased endothelial permeability (acid sphingomyelinase, S1P3-receptors), increased epithelial permeability (S1P2- and S1P3-receptors), and delaying neutrophil apoptosis (neutral sphingomyelinase, S1P1-receptors). They extenuate inflammation by attenuating chemotaxis (S1P) and by stabilizing the endothelial and the epithelial barrier (S1P1-receptor). This chapter discusses the multiple roles and therapeutic options that sphingolipids offer with respect to acute lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Garcia JGN (2013) Sphingolipids in lung endothelial biology and regulation of vascular integrity. In: Gulbins E, Petrache I (eds) Sphingolipids in disease, vol 216, Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Adhikari N, Burns KE, Meade MO (2004) Pharmacologic therapies for adults with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev (4):CD004477

    Google Scholar 

  • Adibhatla RM, Hatcher JF, Gusain A (2012) Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 37(4):671–679

    Article  PubMed  CAS  Google Scholar 

  • Alemany R, van Koppen CJ, Danneberg K, Ter Braak M, Meyer Zu Heringdorf D (2007) Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol 374(5–6):413–428

    Article  PubMed  CAS  Google Scholar 

  • Anjum F, Joshi K, Grinkina N, Gowda S, Cutaia M, Wadgaonkar R (2012) Role of sphingomyelin synthesis in pulmonary endothelial cells cytoskeletal activation and endotoxin induced lung injury. Am J Respir Cell Mol Biol 47(1):94–103

    Article  PubMed  CAS  Google Scholar 

  • Bachmaier K, Guzman E, Kawamura T, Gao X, Malik AB (2012) Sphingosine kinase 1 mediation of expression of the anaphylatoxin receptor C5L2 dampens the inflammatory response to endotoxin. PLoS One 7(2):e30742

    Article  PubMed  CAS  Google Scholar 

  • Bodin S, Welch MD (2005) Plasma membrane organization is essential for balancing competing pseudopod- and uropod-promoting signals during neutrophil polarization and migration. Mol Biol Cell 16(12):5773–5783

    Article  PubMed  CAS  Google Scholar 

  • Bosma KJ, Taneja R, Lewis JF (2010) Pharmacotherapy for prevention and treatment of acute respiratory distress syndrome: current and experimental approaches. Drugs 70(10):1255–1282

    Article  PubMed  CAS  Google Scholar 

  • Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Pappu R, Coughlin SR (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119(7):1871–1879

    PubMed  CAS  Google Scholar 

  • Chang ZQ, Lee SY, Kim HJ, Kim JR, Kim SJ, Hong IK, Oh BC, Choi CS, Goldberg IJ, Park TS (2011) Endotoxin activates de novo sphingolipid biosynthesis via nuclear factor kappa B-mediated upregulation of Sptlc2. Prostaglandins Other Lipid Mediat 94(1–2):44–52

    Article  PubMed  CAS  Google Scholar 

  • Chignard M, Balloy V (2000) Neutrophil recruitment and increased permeability during acute lung injury induced by lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol 279(6):L1083–L1090

    PubMed  CAS  Google Scholar 

  • Chihab R, Porn-Ares MI, Alvarado-Kristensson M, Andersson T (2003) Sphingosine 1-phosphate antagonizes human neutrophil apoptosis via p38 mitogen-activated protein kinase. Cell Mol Life Sci 60(4):776–785

    Article  PubMed  CAS  Google Scholar 

  • Choi OH, Kim JH, Kinet JP (1996) Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 380(6575):634–636

    Article  PubMed  CAS  Google Scholar 

  • Cifone MG, Roncaioli P, De Maria R, Camarda G, Santoni A, Ruberti G, Testi R (1995) Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J 14(23):5859–5868

    PubMed  CAS  Google Scholar 

  • Claus RA, Bunck AC, Bockmeyer CL, Brunkhorst FM, Losche W, Kinscherf R, Deigner HP (2005) Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J 19(12):1719–1721

    PubMed  CAS  Google Scholar 

  • Cross LJ, Matthay MA (2011) Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Crit Care Clin 27(2):355–377

    Article  PubMed  CAS  Google Scholar 

  • Davidson BA, Knight PR, Helinski JD, Nader ND, Shanley TP, Johnson KJ (1999) The role of tumor necrosis factor-alpha in the pathogenesis of aspiration pneumonitis in rats. Anesthesiology 91(2):486–499

    Article  PubMed  CAS  Google Scholar 

  • Delogu G, Famularo G, Amati F, Signore L, Antonucci A, Trinchieri V, Di Marzio L, Cifone MG (1999) Ceramide concentrations in septic patients: a possible marker of multiple organ dysfunction syndrome. Crit Care Med 27(11):2413–2417

    Article  PubMed  CAS  Google Scholar 

  • Diab KJ, Adamowicz JJ, Kamocki K, Rush NI, Garrison J, Gu Y, Schweitzer KS, Skobeleva A, Rajashekhar G, Hubbard WC, Berdyshev EV, Petrache I (2010) Stimulation of sphingosine 1-phosphate signaling as an alveolar cell survival strategy in emphysema. Am J Respir Crit Care Med 181(4):344–352

    Article  PubMed  CAS  Google Scholar 

  • Drobnik W, Liebisch G, Audebert FX, Frohlich D, Gluck T, Vogel P, Rothe G, Schmitz G (2003) Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res 44(4):754–761

    Article  PubMed  CAS  Google Scholar 

  • Falk S, Göggel R, Heydasch U, Brasch F, Müller KM, Wendel A, Uhlig S (1999) Quinolines attenuate PAF-induced pulmonary pressor responses and edema formation. Am J Respir Crit Care Med 160(5 Pt 1):1734–1742

    Article  PubMed  CAS  Google Scholar 

  • Feldhaus MJ, Weyrich AS, Zimmerman GA, McIntyre TM (2002) Ceramide generation in situ alters leukocyte cytoskeletal organization and beta 2-integrin function and causes complete degranulation. J Biol Chem 277(6):4285–4293

    Article  PubMed  CAS  Google Scholar 

  • Frank AJ, Thompson BT (2010) Pharmacological treatments for acute respiratory distress syndrome. Curr Opin Crit Care 16(1):62–68

    Article  PubMed  Google Scholar 

  • Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 108(5):689–701

    PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272(41):25437–25440

    Article  PubMed  CAS  Google Scholar 

  • Gilroy DW, Lawrence T, Perretti M, Rossi AG (2004) Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3(5):401–416

    Article  PubMed  CAS  Google Scholar 

  • Göggel R, Uhlig S (2005) The inositol trisphosphate pathway mediates platelet-activating-factor-induced pulmonary oedema. Eur Respir J 25(5):849–857

    Article  PubMed  CAS  Google Scholar 

  • Göggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L, Brade H, Ehlers S, Slutsky AS, Schutze S, Gulbins E, Uhlig S (2004) PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 10(2):155–160

    Article  PubMed  CAS  Google Scholar 

  • Gon Y, Wood MR, Kiosses WB, Jo E, Sanna MG, Chun J, Rosen H (2005) S1P3 receptor-induced reorganization of epithelial tight junctions compromises lung barrier integrity and is potentiated by TNF. Proc Natl Acad Sci USA 102(26):9270–9275

    Article  PubMed  CAS  Google Scholar 

  • Gon Y, Wood MR, Kiosses WB, Jo E, Sanna MG, Chun J, Rosen H (2009) Retraction for “S1P3 receptor-induced reorganization of epithelial tight junctions compromises lung barrier integrity and is potentiated by TNF”. Proc Natl Acad Sci USA 106(30):12561

    PubMed  CAS  Google Scholar 

  • Gowda S, Yeang C, Wadgaonkar S, Anjum F, Grinkina N, Cutaia M, Jiang XC, Wadgaonkar R (2011) Sphingomyelin synthase 2 (SMS2) deficiency attenuates LPS-induced lung injury. Am J Physiol Lung Cell Mol Physiol 300(3):L430–L440

    Article  PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, Edwards CK 3rd, Schuchman EH, Fuks Z, Kolesnick R (1997) Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186(11):1831–1841

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    Article  PubMed  CAS  Google Scholar 

  • Hayashida A, Bartlett AH, Foster TJ, Park PW (2009) Staphylococcus aureus beta-toxin induces lung injury through syndecan-1. Am J Pathol 174(2):509–518

    Article  PubMed  CAS  Google Scholar 

  • Hinkovska-Galcheva V, Kjeldsen L, Mansfield PJ, Boxer LA, Shayman JA, Suchard SJ (1998) Activation of a plasma membrane-associated neutral sphingomyelinase and concomitant ceramide accumulation during IgG-dependent phagocytosis in human polymorphonuclear leukocytes. Blood 91(12):4761–4769

    PubMed  CAS  Google Scholar 

  • Hla T, Lee MJ, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids–receptor revelations. Science 294(5548):1875–1878

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz R, Ferlinz K, Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 375(7):447–450

    Article  PubMed  CAS  Google Scholar 

  • Inoki I, Takuwa N, Sugimoto N, Yoshioka K, Takata S, Kaneko S, Takuwa Y (2006) Negative regulation of endothelial morphogenesis and angiogenesis by S1P2 receptor. Biochem Biophys Res Commun 346(1):293–300

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Zeng H, Schmid KW, Toetsch M, Uhlig S, Möröy T (2006) The zinc finger protein Gfi1 acts upstream of TNF to attenuate endotoxin-mediated inflammatory responses in the lung. Eur J Immunol 36(2):421–430

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Yi F, Zhang F, Poklis JL, Li PL (2008) Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells. Arterioscler Thromb Vasc Biol 28(11):2056–2062

    Article  PubMed  CAS  Google Scholar 

  • Ju H, Zou R, Venema VJ, Venema RC (1997) Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272(30):18522–18525

    Article  PubMed  CAS  Google Scholar 

  • Karsunky H, Zeng H, Schmidt T, Zevnik B, Kluge R, Schmid KW, Duhrsen U, Möröy T (2002) Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 30(3):295–300

    Article  PubMed  Google Scholar 

  • Kawa S, Kimura S, Hakomori S, Igarashi Y (1997) Inhibition of chemotactic motility and trans-endothelial migration of human neutrophils by sphingosine 1-phosphate. FEBS Lett 420(2–3):196–200

    Article  PubMed  CAS  Google Scholar 

  • Komarova YA, Mehta D, Malik AB (2007) Dual regulation of endothelial junctional permeability. Sci STKE 2007(412):re8

    Google Scholar 

  • Kuebler WM, Yang Y, Samapati R, Uhlig S (2010) Vascular barrier regulation by PAF, ceramide, caveolae, and NO – an intricate signaling network with discrepant effects in the pulmonary and systemic vasculature. Cell Physiol Biochem 26(1):29–40

    Article  PubMed  CAS  Google Scholar 

  • Künstle G, Leist M, Uhlig S, Revesz L, Feifel R, MacKenzie A, Wendel A (1997) ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF-alpha. Immunol Lett 55(1):5–10

    Article  PubMed  CAS  Google Scholar 

  • Kunzmann S, Collins JJ, Yang Y, Uhlig S, Kallapur SG, Speer CP, Jobe AH, Kramer BW (2011) Antenatal inflammation reduces expression of caveolin-1 and influences multiple signaling pathways in preterm fetal lungs. Am J Respir Cell Mol Biol 45(5):969–976

    Article  PubMed  CAS  Google Scholar 

  • Ledgerwood LG, Lal G, Zhang N, Garin A, Esses SJ, Ginhoux F, Merad M, Peche H, Lira SA, Ding Y, Yang Y, He X, Schuchman EH, Allende ML, Ochando JC, Bromberg JS (2008) The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol 9(1):42–53

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Xu DZ, Feketeova E, Kannan KB, Yun JK, Deitch EA, Fekete Z, Livingston DH, Hauser CJ (2004) Attenuation of shock-induced acute lung injury by sphingosine kinase inhibition. J Trauma 57(5):955–960

    Article  PubMed  Google Scholar 

  • Li Z, Hailemariam TK, Zhou H, Li Y, Duckworth DC, Peake DA, Zhang Y, Kuo MS, Cao G, Jiang XC (2007) Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim Biophys Acta 1771(9):1186–1194

    Article  PubMed  CAS  Google Scholar 

  • Lin WC, Lin CF, Chen CL, Chen CW, Lin YS (2011) Inhibition of neutrophil apoptosis via sphingolipid signaling in acute lung injury. J Pharmacol Exp Ther 339(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Lindner K, Uhlig U, Uhlig S (2005) Ceramide alters endothelial cell permeability by a nonapoptotic mechanism. Br J Pharmacol 145(1):132–140

    Article  PubMed  CAS  Google Scholar 

  • Liu HB, Cui NQ, Wang Q, Li DH, Xue XP (2008) Sphingosine-1-phosphate and its analogue FTY720 diminish acute pulmonary injury in rats with acute necrotizing pancreatitis. Pancreas 36(3):e10–e15

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon AC, Buckley A, Chilvers ER, Rossi AG, Haslett C, Sethi T (2002) Sphingosine kinase: a point of convergence in the action of diverse neutrophil priming agents. J Immunol 169(11):6394–6400

    PubMed  CAS  Google Scholar 

  • Martin TR, Hagimoto N, Nakamura M, Matute-Bello G (2005) Apoptosis and epithelial injury in the lungs. Proc Am Thorac Soc 2(3):214–220

    Article  PubMed  CAS  Google Scholar 

  • Matute-Bello G, Liles WC, Radella F 2nd, Steinberg KP, Ruzinski JT, Hudson LD, Martin TR (2000) Modulation of neutrophil apoptosis by granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor during the course of acute respiratory distress syndrome. Crit Care Med 28(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Maunder RJ, Hackman RC, Riff E, Albert RK, Springmeyer SC (1986) Occurrence of the adult respiratory distress syndrome in neutropenic patients. Am Rev Respir Dis 133(2):313–316

    PubMed  CAS  Google Scholar 

  • McVerry BJ, Garcia JG (2004) Endothelial cell barrier regulation by sphingosine 1-phosphate. J Cell Biochem 92(6):1075–1085

    Article  PubMed  CAS  Google Scholar 

  • McVerry BJ, Garcia JG (2005) In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal 17(2):131–139

    Article  PubMed  CAS  Google Scholar 

  • McVerry BJ, Peng X, Hassoun PM, Sammani S, Simon BA, Garcia JG (2004) Sphingosine 1-phosphate reduces vascular leak in murine and canine models of acute lung injury. Am J Respir Crit Care Med 170(9):987–993

    Article  PubMed  Google Scholar 

  • Medler TR, Petrusca DN, Lee PJ, Hubbard WC, Berdyshev EV, Skirball J, Kamocki K, Schuchman E, Tuder RM, Petrache I (2008) Apoptotic sphingolipid signaling by ceramides in lung endothelial cells. Am J Respir Cell Mol Biol 38(6):639–646

    Article  PubMed  CAS  Google Scholar 

  • Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+−calmodulin and caveolin. J Biol Chem 272(25):15583–15586

    Article  PubMed  CAS  Google Scholar 

  • Miotla JM, Williams TJ, Hellewell PG, Jeffery PK (1996) A role for the beta2 integrin CD11b in mediating experimental lung injury in mice. Am J Respir Cell Mol Biol 14(4):363–373

    Article  PubMed  CAS  Google Scholar 

  • Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck LK, Baba HA, Tietge UJ, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113(4):569–581

    PubMed  CAS  Google Scholar 

  • O’Dea KP, Wilson MR, Dokpesi JO, Wakabayashi K, Tatton L, van Rooijen N, Takata M (2009) Mobilization and margination of bone marrow Gr-1high monocytes during subclinical endotoxemia predisposes the lungs toward acute injury. J Immunol 182(2):1155–1166

    PubMed  Google Scholar 

  • Ogawa EN, Ishizaka A, Tasaka S, Koh H, Ueno H, Amaya F, Ebina M, Yamada S, Funakoshi Y, Soejima J, Moriyama K, Kotani T, Hashimoto S, Morisaki H, Abraham E, Takeda J (2006) Contribution of high-mobility group box-1 to the development of ventilator-induced lung injury. Am J Respir Crit Care Med 174(4):400–407

    Article  PubMed  CAS  Google Scholar 

  • Ognibene FP, Martin SE, Parker MM, Schlesinger T, Roach P, Burch C, Shelhamer JH, Parrillo JE (1986) Adult respiratory distress syndrome in patients with severe neutropenia. N Engl J Med 315(9):547–551

    Article  PubMed  CAS  Google Scholar 

  • Ohanian J, Ohanian V (2001) Sphingolipids in mammalian cell signalling. Cell Mol Life Sci 58(14):2053–2068

    Article  PubMed  CAS  Google Scholar 

  • Oskeritzian CA, Alvarez SE, Hait NC, Price MM, Milstien S, Spiegel S (2008) Distinct roles of sphingosine kinases 1 and 2 in human mast-cell functions. Blood 111(8):4193–4200

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8(3):185–194

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Hassoun PM, Sammani S, McVerry BJ, Burne MJ, Rabb H, Pearse D, Tuder RM, Garcia JG (2004) Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med 169(11):1245–1251

    Article  PubMed  Google Scholar 

  • Peters SL, Alewijnse AE (2007) Sphingosine-1-phosphate signaling in the cardiovascular system. Curr Opin Pharmacol 7(2):186–192

    Article  PubMed  CAS  Google Scholar 

  • Pierini LM, Eddy RJ, Fuortes M, Seveau S, Casulo C, Maxfield FR (2003) Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 278(12):10831–10841

    Article  PubMed  CAS  Google Scholar 

  • Preuss S, Stadelmann S, Omam FD, Scheiermann J, Winoto-Morbach S, von Bismarck P, Knerlich-Lukoschus F, Lex D, Adam-Klages S, Wesch D, Held-Feindt J, Uhlig S, Schutze S, Krause MF (2012) Inositol-trisphosphate reduces alveolar apoptosis and pulmonary edema in neonatal lung injury. Am J Respir Cell Mol Biol 47(2):158–169

    Article  PubMed  CAS  Google Scholar 

  • Quintern LE, Zenk TS, Sandhoff K (1989) The urine from patients with peritonitis as a rich source for purifying human acid sphingomyelinase and other lysosomal enzymes. Biochim Biophys Acta 1003(2):121–124

    Article  PubMed  CAS  Google Scholar 

  • Rahaman M, Costello RW, Belmonte KE, Gendy SS, Walsh MT (2006) Neutrophil sphingosine 1-phosphate and lysophosphatidic acid receptors in pneumonia. Am J Respir Cell Mol Biol 34(2):233–241

    Article  PubMed  CAS  Google Scholar 

  • Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307(23):2526–2533

    PubMed  Google Scholar 

  • Reiss LK, Adam D, Uhlig S (2012a) Acid sphingomyelinase-deficient mice are protected from the lethal cardiovascular effects in TNF-induced septic shock. In: Paper presented at the Deutsche Gesellschaft für Experimentelle und Klinische Pharmakologie und Toxikologie e.V. Abstracts of the 78th annual meeting, Dresden, Germany, 19–22 Mar 2012

    Google Scholar 

  • Reiss LK, Uhlig U, Uhlig S (2012b) Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol 91(6–7):590–601

    Article  PubMed  CAS  Google Scholar 

  • Roth AG, Drescher D, Yang Y, Redmer S, Uhlig S, Arenz C (2009) Potent and selective inhibition of acid sphingomyelinase by bisphosphonates. Angew Chem Int Ed Engl 48(41):7560–7563

    Article  PubMed  CAS  Google Scholar 

  • Ryan AJ, McCoy DM, McGowan SE, Salome RG, Mallampalli RK (2003) Alveolar sphingolipids generated in response to TNF-alpha modifies surfactant biophysical activity. J Appl Physiol 94(1):253–258

    PubMed  CAS  Google Scholar 

  • Samapati R, Yang Y, Yin J, Stoerger C, Arenz C, Dietrich A, Gudermann T, Adam D, Wu S, Freichel M, Flockerzi V, Uhlig S, Kuebler WM (2012) Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and transient receptor potential classical 6. Am J Respir Crit Care Med 185(2):160–170

    Article  PubMed  CAS  Google Scholar 

  • Sammani S, Moreno-Vinasco L, Mirzapoiazova T, Singleton PA, Chiang ET, Evenoski CL, Wang T, Mathew B, Husain A, Moitra J, Sun X, Nunez L, Jacobson JR, Dudek SM, Natarajan V, Garcia JG (2010) Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am J Respir Cell Mol Biol 43(4):394–402

    Article  PubMed  CAS  Google Scholar 

  • Sammani S, Park KS, Zaidi SR, Mathew B, Wang T, Huang Y, Zhou T, Lussier YA, Husain AN, Moreno-Vinasco L, Vigneswaran WT, Garcia JG (2011) A sphingosine 1-phosphate 1 receptor agonist modulates brain death-induced neurogenic pulmonary injury. Am J Respir Cell Mol Biol 45(5):1022–1027

    Article  PubMed  CAS  Google Scholar 

  • Sanchez T, Thangada S, Wu MT, Kontos CD, Wu D, Wu H, Hla T (2005) PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc Natl Acad Sci USA 102(12):4312–4317

    Article  PubMed  CAS  Google Scholar 

  • Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T (2007) Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol 27(6):1312–1318

    Article  PubMed  CAS  Google Scholar 

  • Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71(5):765–776

    Article  PubMed  CAS  Google Scholar 

  • Shea BS, Brooks SF, Fontaine BA, Chun J, Luster AD, Tager AM (2010) Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am J Respir Cell Mol Biol 43(6):662–673

    Article  PubMed  CAS  Google Scholar 

  • Shikata Y, Birukov KG, Birukova AA, Verin A, Garcia JG (2003) Involvement of site-specific FAK phosphorylation in sphingosine-1 phosphate- and thrombin-induced focal adhesion remodeling: role of Src and GIT. FASEB J 17(15):2240–2249

    Article  PubMed  CAS  Google Scholar 

  • Simarro M, Calvo J, Vila JM, Places L, Padilla O, Alberola-Ila J, Vives J, Lozano F (1999) Signaling through CD5 involves acidic sphingomyelinase, protein kinase C-zeta, mitogen-activated protein kinase kinase, and c-Jun NH2-terminal kinase. J Immunol 162(9):5149–5155

    PubMed  CAS  Google Scholar 

  • Singleton PA, Moreno-Vinasco L, Sammani S, Wanderling SL, Moss J, Garcia JG (2007) Attenuation of vascular permeability by methylnaltrexone: role of mOP-R and S1P3 transactivation. Am J Respir Cell Mol Biol 37(2):222–231

    Article  PubMed  CAS  Google Scholar 

  • Sitrin RG, Sassanella TM, Petty HR (2011) An obligate role for membrane-associated neutral sphingomyelinase activity in orienting chemotactic migration of human neutrophils. Am J Respir Cell Mol Biol 44(2):205–212

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277(29):25851–25854

    Article  PubMed  CAS  Google Scholar 

  • Suchard SJ, Hinkovska-Galcheva V, Mansfield PJ, Boxer LA, Shayman JA (1997) Ceramide inhibits IgG-dependent phagocytosis in human polymorphonuclear leukocytes. Blood 89(6):2139–2147

    PubMed  CAS  Google Scholar 

  • Szczepaniak WS, Zhang Y, Hagerty S, Crow MT, Kesari P, Garcia JG, Choi AM, Simon BA, McVerry BJ (2008) Sphingosine 1-phosphate rescues canine LPS-induced acute lung injury and alters systemic inflammatory cytokine production in vivo. Transl Res 152(5):213–224

    Article  PubMed  CAS  Google Scholar 

  • Tafesse FG, Huitema K, Hermansson M, van der Poel S, van den Dikkenberg J, Uphoff A, Somerharju P, Holthuis JC (2007) Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J Biol Chem 282(24):17537–17547

    Article  PubMed  CAS  Google Scholar 

  • Taha TA, Hannun YA, Obeid LM (2006) Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 39(2):113–131

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Abe T, Sato T, Miura K, Takahashi I, Yano M, Watanabe A, Imashuku S, Takada G (2002) Elevated sphingomyelinase and hypercytokinemia in hemophagocytic lymphohistiocytosis. J Pediatr Hematol Oncol 24(5):401–404

    Article  PubMed  Google Scholar 

  • Takuwa Y, Okamoto Y, Yoshioka K, Takuwa N (2008) Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system. Biochim Biophys Acta 1781(9):483–488

    Article  PubMed  CAS  Google Scholar 

  • Tauseef M, Kini V, Knezevic N, Brannan M, Ramchandaran R, Fyrst H, Saba J, Vogel SM, Malik AB, Mehta D (2008) Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ Res 103(10):1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Uhlig S, Gulbins E (2008) Sphingolipids in the lungs. Am J Respir Crit Care Med 178(11):1100–1114

    Article  PubMed  CAS  Google Scholar 

  • Uhlig S, Göggel R, Engel S (2005) Mechanisms of platelet-activating factor (PAF)-mediated responses in the lung. Pharmacol Rep 57(Suppl):206–221

    PubMed  Google Scholar 

  • von Bismarck P, Wistadt CF, Klemm K, Winoto-Morbach S, Uhlig U, Schutze S, Adam D, Lachmann B, Uhlig S, Krause MF (2008) Improved pulmonary function by acid sphingomyelinase inhibition in a newborn piglet lavage model. Am J Respir Crit Care Med 177(11):1233–1241

    Article  CAS  Google Scholar 

  • von Bismarck P, Winoto-Mohrbach S, Herzberg M, Uhlig U, Schutze S, Lucius R, Krause MF (2012) IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model. Pulm Pharmacol Ther 25(3):228–235

    Article  CAS  Google Scholar 

  • Wadgaonkar R, Patel V, Grinkina N, Romano C, Liu J, Zhao Y, Sammani S, Garcia JG, Natarajan V (2009) Differential regulation of sphingosine kinases 1 and 2 in lung injury. Am J Physiol Lung Cell Mol Physiol 296(4):L603–L613

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Dudek SM (2009) Regulation of vascular permeability by sphingosine 1-phosphate. Microvasc Res 77(1):39–45

    Article  PubMed  CAS  Google Scholar 

  • Wilson MR, Goddard ME, O’Dea KP, Choudhury S, Takata M (2007) Differential roles of p55 and p75 tumor necrosis factor receptors on stretch-induced pulmonary edema in mice. Am J Physiol Lung Cell Mol Physiol 293(1):L60–L68

    Article  PubMed  CAS  Google Scholar 

  • Wosten-van Asperen RM, Lutter R, Haitsma JJ, Merkus MP, van Woensel JB, van der Loos CM, Florquin S, Lachmann B, Bos AP (2008) ACE mediates ventilator-induced lung injury in rats via angiotensin II but not bradykinin. Eur Respir J 31(2):363–371

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Qu JM, Summah H, Zhang J, Zhu YG, Jiang HN (2010a) Protective effects of imipramine in murine endotoxin-induced acute lung injury. Eur J Pharmacol 638(1–3):128–133

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yin J, Baumgartner W, Samapati R, Solymosi EA, Reppien E, Kuebler WM, Uhlig S (2010b) Platelet-activating factor reduces endothelial nitric oxide production: role of acid sphingomyelinase. Eur Respir J 36(2):417–427

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Gorshkova IA, Berdyshev E, He D, Fu P, Ma W, Su Y, Usatyuk PV, Pendyala S, Oskouian B, Saba JD, Garcia JG, Natarajan V (2011) Protection of LPS-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression. Am J Respir Cell Mol Biol 45(2):426–435

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Uhlig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Uhlig, S., Yang, Y. (2013). Sphingolipids in Acute Lung Injury. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_11

Download citation

Publish with us

Policies and ethics