Skip to main content

Parvoviruses: The Friendly Anticancer Immunomodulator

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

Oncolytic viruses represent versatile tools that through natural mechanisms or upon genetic manipulation can specifically target and kill tumor cells. In the last ten years it became clear that one of the major modes of action of these agents is their effect as an in situ (intratumoral) anticancer vaccine.

Parvoviruses (PVs) were recently approved for clinical use as an oncolytic drug to treat glioma. The chapter addresses several points of the immumomodulating mechanism of oncolytic PVs, such as the indirect (through immunogenic killing of tumor cells) or direct (abortive infection) activation of human immune cells. In addition, therapeutic strategies such as the use of cytokine modified or CpG DNA-enriched parvoviruses and immunomodulating combinations are also discussed.

The most recent research on that topic characterizes PVs as a silent anticancer immunomodulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galon, J., et al.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006). doi:10.1126/science.1129139, 313/5795/1960 [pii]

    Article  PubMed  CAS  Google Scholar 

  2. Ogino, S., Galon, J., Fuchs, C.S., Dranoff, G.: Cancer immunology – analysis of host and tumor factors for personalized medicine. Nat. Rev. Clin. Oncol. 8, 711–719 (2011). doi:10.1038/nrclinonc.2011.122

    Article  PubMed  CAS  Google Scholar 

  3. Cooper, M.A., et al.: Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97, 3146–3151 (2001)

    Article  PubMed  CAS  Google Scholar 

  4. Gauvrit, A., et al.: Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Res. 68, 4882–4892 (2008). doi:10.1158/0008-5472.CAN-07-6265, 68/12/4882 [pii]

    Article  PubMed  CAS  Google Scholar 

  5. Breitbach, C.J., et al.: Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477, 99–102 (2011). doi:10.1038/nature10358

    Article  PubMed  CAS  Google Scholar 

  6. Zamarin, D., Palese, P.: Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol. 7, 347–367 (2012). doi:10.2217/fmb.12.4

    Article  PubMed  CAS  Google Scholar 

  7. Liu, J., Wennier, S., McFadden, G.: The immunoregulatory properties of oncolytic myxoma virus and their implications in therapeutics. Microbes Infect. 12, 1144–1152 (2010). doi:10.1016/j.micinf.2010.08.012

    Article  PubMed  CAS  Google Scholar 

  8. Maatta, A.M., et al.: Evaluation of cancer virotherapy with attenuated replicative Semliki forest virus in different rodent tumor models. Int. J. Cancer 121, 863–870 (2007). doi:10.1002/ijc.22758

    Article  PubMed  CAS  Google Scholar 

  9. Rommelaere, J., et al.: Oncolytic parvoviruses as cancer therapeutics. Cytokine Growth Factor Rev. 21, 185–195 (2010). doi:10.1016/j.cytogfr.2010.02.011

    Article  PubMed  CAS  Google Scholar 

  10. Bashir, T., Horlein, R., Rommelaere, J., Willwand, K.: Cyclin A activates the DNA polymerase delta-dependent elongation machinery in vitro: a parvovirus DNA replication model. Proc. Natl. Acad. Sci. U. S. A. 97, 5522–5527 (2000). doi:10.1073/pnas.090485297090485297, [pii]

    Article  PubMed  CAS  Google Scholar 

  11. Perros, M., et al.: Upstream CREs participate in the basal activity of minute virus of mice promoter P4 and in its stimulation in ras-transformed cells. J. Virol. 69, 5506–5515 (1995)

    PubMed  CAS  Google Scholar 

  12. Mousset, S., Ouadrhiri, Y., Caillet-Fauquet, P., Rommelaere, J.: The cytotoxicity of the autonomous parvovirus minute virus of mice nonstructural proteins in FR3T3 rat cells depends on oncogene expression. J. Virol. 68, 6446–6453 (1994)

    PubMed  CAS  Google Scholar 

  13. Rayet, B., Lopez-Guerrero, J.A., Rommelaere, J., Dinsart, C.: Induction of programmed cell death by parvovirus H-1 in U937 cells: connection with the tumor necrosis factor alpha signalling pathway. J. Virol. 72, 8893–8903 (1998)

    PubMed  CAS  Google Scholar 

  14. Ran, Z., Rayet, B., Rommelaere, J., Faisst, S.: Parvovirus H-1-induced cell death: influence of intracellular NAD consumption on the regulation of necrosis and apoptosis. Virus Res. 65, 161–174 (1999), S016817029900115X [pii]

    Article  PubMed  CAS  Google Scholar 

  15. Moehler, M., et al.: Effective infection, apoptotic cell killing and gene transfer of human hepatoma cells but not primary hepatocytes by parvovirus H1 and derived vectors. Cancer Gene Ther. 8, 158–167 (2001). doi:10.1038/sj.cgt.7700288

    Article  PubMed  CAS  Google Scholar 

  16. Di Piazza, M., et al.: Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and TRAIL-resistant glioma cells. J. Virol. 81, 4186–4198 (2007). doi:10.1128/JVI.02601-06, JVI.02601-06 [pii]

    Article  PubMed  Google Scholar 

  17. Faisst, S., et al.: Dose-dependent regression of HeLa cell-derived tumours in SCID mice after parvovirus H-1 infection. Int. J. Cancer 75, 584–589 (1998). doi:10.1002/(SICI)1097-0215(19980209)75:4%3C584::AID-IJC15%3E3.0.CO;2-9, [pii]

    Article  PubMed  CAS  Google Scholar 

  18. Dupressoir, T., Vanacker, J.M., Cornelis, J.J., Duponchel, N., Rommelaere, J.: Inhibition by parvovirus H-1 of the formation of tumors in nude mice and colonies in vitro by transformed human mammary epithelial cells. Cancer Res. 49, 3203–3208 (1989)

    PubMed  CAS  Google Scholar 

  19. Angelova, A.L., et al.: Improvement of gemcitabine-based therapy of pancreatic carcinoma by means of oncolytic parvovirus H-1PV. Clin. Cancer Res. 15, 511–519 (2009). doi:10.1158/1078-0432.CCR-08-1088, 15/2/511 [pii]

    Article  PubMed  CAS  Google Scholar 

  20. Angelova, A.L., et al.: Oncolytic rat parvovirus H-1PV, a candidate for the treatment of human lymphoma: in vitro and in vivo studies. Mol. Ther. 17, 1164–1172 (2009). doi:10.1038/mt.2009.78, mt200978 [pii]

    Article  PubMed  CAS  Google Scholar 

  21. Kiprianova, I., et al.: Regression of glioma in rat models by intranasal application of parvovirus h-1. Clin. Cancer Res. 17, 5333–5342 (2011). doi:10.1158/1078-0432.CCR-10-3124, 1078-0432.CCR-10-3124 [pii]

    Article  PubMed  CAS  Google Scholar 

  22. Rommelaere, J., Cornelis, J.J.: Antineoplastic activity of parvoviruses. J. Virol. Methods 33, 233–251 (1991)

    Article  PubMed  CAS  Google Scholar 

  23. Toolan, H.W., Saunders, E.L., Southam, C.M., Moore, A.E., Levin, A.G.: H-1 virus viremia in the human. Proc. Soc. Exp. Biol. Med. 119, 711–715 (1965)

    Article  PubMed  CAS  Google Scholar 

  24. Raykov, Z., et al.: Combined oncolytic and vaccination activities of parvovirus H-1 in a metastatic tumor model. Oncol. Rep. 17, 1493–1499 (2007)

    PubMed  Google Scholar 

  25. McKisic, M.D., Paturzo, F.X., Smith, A.L.: Mouse parvovirus infection potentiates rejection of tumor allografts and modulates T cell effector functions. Transplantation 61, 292–299 (1996)

    Article  PubMed  CAS  Google Scholar 

  26. Grekova, S.P., Raykov, Z., Zawatzky, R., Rommelaere, J., Koch, U.: Activation of a glioma-specific immune response by oncolytic parvovirus Minute Virus of Mice infection. Cancer Gene Ther. 19, 468–475 (2012). doi:10.1038/cgt.2012.20

    Article  PubMed  CAS  Google Scholar 

  27. Grekova, S., et al.: Immune cells participate in the oncosuppressive activity of parvovirus H-1PV and are activated as a result of their abortive infection with this agent. Cancer Biol. Ther. 10, 1280–1289 (2011), 13455 [pii]

    Google Scholar 

  28. Nuesch, J.P., Lacroix, J., Marchini, A., Rommelaere, J.: Molecular pathways: rodent parvoviruses – mechanisms of oncolysis and prospects for clinical cancer treatment. Clin. Cancer Res. 18, 3516–3523 (2012). doi:10.1158/1078-0432.CCR-11-2325

    Article  PubMed  Google Scholar 

  29. Cotmore, S.F., Tattersall, P.: Parvoviral host range and cell entry mechanisms. Adv. Virus Res. 70, 183–232 (2007). doi:10.1016/S0065-3527(07)70005-2, S0065-3527(07)70005-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  30. Moehler, M.H., et al.: Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum. Gene Ther. 16, 996–1005 (2005). doi:10.1089/hum.2005.16.996

    Article  PubMed  CAS  Google Scholar 

  31. Obeid, M., et al.: Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007). doi:10.1038/nm1523, nm1523 [pii]

    Article  PubMed  CAS  Google Scholar 

  32. Michaud, M., et al.: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011). doi:10.1126/science.1208347

    Article  PubMed  CAS  Google Scholar 

  33. Kepp, O., et al.: Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev. 30, 61–69 (2011). doi:10.1007/s10555-011-9273-4

    Article  PubMed  CAS  Google Scholar 

  34. Zitvogel, L., Kepp, O., Galluzzi, L., Kroemer, G.: Inflammasomes in carcinogenesis and anticancer immune responses. Nat. Immunol. 13, 343–351 (2012). doi:10.1038/ni.2224

    Article  PubMed  CAS  Google Scholar 

  35. Moehler, M., et al.: Oncolytic parvovirus H1 induces release of heat-shock protein HSP72 in susceptible human tumor cells but may not affect primary immune cells. Cancer Gene Ther. 10, 477–480 (2003). doi:10.1038/sj.cgt.7700591

    Article  PubMed  CAS  Google Scholar 

  36. Moehler, M., et al.: Activation of the human immune system by chemotherapeutic or targeted agents combined with the oncolytic parvovirus H-1. BMC Cancer 11, 464 (2011). doi:10.1186/1471-2407-11-464

    Article  PubMed  Google Scholar 

  37. Bhat, R., Dempe, S., Dinsart, C., Rommelaere, J.: Enhancement of NK cell antitumor responses using an oncolytic parvovirus. Int. J. Cancer 128, 908–919 (2011). doi:10.1002/ijc.25415

    Article  PubMed  CAS  Google Scholar 

  38. Morales, O., et al.: Activation of a helper and not regulatory human CD4+ T cell response by oncolytic H-1 parvovirus. PLoS One 7, e32197 (2012). doi:10.1371/journal.pone.0032197%20PONE-D-12-00550, [pii]

    Article  PubMed  CAS  Google Scholar 

  39. Raykov, Z., et al.: B1 lymphocytes and myeloid dendritic cells in lymphoid organs are preferential extratumoral sites of parvovirus minute virus of mice prototype strain expression. J. Virol. 79, 3517–3524 (2005). doi:10.1128/JVI.79.6.3517-3524.2005, 79/6/3517 [pii]

    Article  PubMed  CAS  Google Scholar 

  40. Lang, S.I., Giese, N.A., Rommelaere, J., Dinsart, C., Cornelis, J.J.: Humoral immune responses against minute virus of mice vectors. J. Gene Med. 8, 1141–1150 (2006). doi:10.1002/jgm.940

    Article  PubMed  CAS  Google Scholar 

  41. Olijslagers, S., et al.: Potentiation of a recombinant oncolytic parvovirus by expression of Apoptin. Cancer Gene Ther. 8, 958–965 (2001). doi:10.1038/sj.cgt.7700392

    Article  PubMed  CAS  Google Scholar 

  42. Giese, N.A., et al.: Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice. Cancer Gene Ther. 9, 432–442 (2002). doi:10.1038/sj.cgt.7700457

    Article  PubMed  CAS  Google Scholar 

  43. Wetzel, K., et al.: MCP-3 (CCL7) delivered by parvovirus MVMp reduces tumorigenicity of mouse melanoma cells through activation of T lymphocytes and NK cells. Int. J. Cancer 120, 1364–1371 (2007). doi:10.1002/ijc.22421

    Article  PubMed  CAS  Google Scholar 

  44. Haag, A., et al.: Highly efficient transduction and expression of cytokine genes in human tumor cells by means of autonomous parvovirus vectors; generation of antitumor responses in recipient mice. Hum. Gene Ther. 11, 597–609 (2000). doi:10.1089/10430340050015789

    Article  PubMed  CAS  Google Scholar 

  45. Enderlin, M., et al.: TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther. 16, 149–160 (2009). doi:10.1038/cgt.2008.62, cgt200862 [pii]

    Article  PubMed  CAS  Google Scholar 

  46. Krieg, A.M.: Development of TLR9 agonists for cancer therapy. J. Clin. Invest. 117, 1184–1194 (2007). doi:10.1172/JCI31414

    Article  PubMed  CAS  Google Scholar 

  47. Karlin, S., Doerfler, W., Cardon, L.R.: Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J. Virol. 68, 2889–2897 (1994)

    PubMed  CAS  Google Scholar 

  48. Raykov, Z., Grekova, S., Leuchs, B., Aprahamian, M., Rommelaere, J.: Arming parvoviruses with CpG motifs to improve their oncosuppressive capacity. Int. J. Cancer 122, 2880–2884 (2008). doi:10.1002/ijc.23472

    Article  PubMed  CAS  Google Scholar 

  49. Cerullo, V., et al.: An oncolytic adenovirus enhanced for toll-like receptor 9 stimulation increases antitumor immune responses and tumor clearance. Mol. Ther. 20, 2076–2086 (2012). doi:10.1038/mt.2012.137, mt2012137 [pii]

    Article  PubMed  CAS  Google Scholar 

  50. Grekova, S.P., et al.: Interferon gamma improves the vaccination potential of oncolytic parvovirus H-1PV for the treatment of peritoneal carcinomatosis in pancreatic cancer. Cancer Biol. Ther. 12, 888–895 (2011). doi:10.4161/cbt.12.10.17678, 17678 [pii]

    Article  PubMed  CAS  Google Scholar 

  51. Geletneky, K., et al.: Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol. BMC Cancer 12, 99 (2012). doi:10.1186/1471-2407-12-99, 1471-2407-12-99 [pii]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahari Raykov MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Raykov, Z., Grekova, S.P., Angelova, A.L., Rommelaere, J. (2013). Parvoviruses: The Friendly Anticancer Immunomodulator. In: Giese, M. (eds) Molecular Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1419-3_25

Download citation

Publish with us

Policies and ethics