Skip to main content

Vaccination Against Malaria Parasites: Paradigms, Perils, and Progress

  • Chapter
  • First Online:
Molecular Vaccines
  • 1172 Accesses

Abstract

Malaria, caused by infection of humans with Plasmodium spp., remains a global health emergency with >200 million new cases and hundreds of thousands of deaths annually. Although naturally acquired resistance against severe malarial disease can develop with age and following repeated exposures to the parasite, current control of Plasmodium infection still relies heavily on the use of anti-malaria chemotherapies. However, the continued selection of drug-resistant parasites continues to confound efforts to effectively manage the incidence and prevalence of the disease caused by this major human pathogen.

Thus, the development of an efficacious vaccine against Plasmodium remains a major goal for improving global public health. Despite decades of significant effort, currently no licensed vaccine for malaria exists. Several factors contribute to the difficulties with developing anti-malaria vaccines, most notably the complex multi-host, multistage developmental life cycle of Plasmodium parasites. Additionally, our limited understanding of the immunologic requirements necessary for the host to control, or clear, Plasmodium parasites remains poorly defined. Importantly, recent work has improved our understanding of host-Plasmodium parasite interactions and has provided critical insight into new strategies for enhancing anti-malarial immunity via prophylactic vaccination.

Based on these new concepts and paradigms, exciting progress has been made in the areas of subunit, vectored, and whole-parasite vaccination against liver-stage and blood-stage Plasmodium infection. Herein, we review the biology and pathogenesis of Plasmodium parasite infection and highlight recent progress and illustrate remaining hurdles for vaccination against malaria parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, C.J., et al.: Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379, 413–431 (2012). doi:10.1016/S0140-6736(12)60034-8. S0140-6736(12)60034-8 [pii]

    PubMed  Google Scholar 

  2. World Health Organization: World Malaria Report 2010. http://www.who.int/malaria/world_malaria_report_2010/en/ (2010)

  3. Dondorp, A.M., et al.: Artemisinin resistance: current status and scenarios for containment. Nat. Rev. Microbiol. 8, 272–280 (2010). doi:10.1038/nrmicro2331

    PubMed  CAS  Google Scholar 

  4. N’Guessan, R., Corbel, V., Akogbeto, M., Rowland, M.: Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg. Infect. Dis. 13, 199–206 (2007). doi:10.3201/eid1302.060631

    PubMed  Google Scholar 

  5. Mackinnon, M.J., Marsh, K.: The selection landscape of malaria parasites. Science 328, 866–871 (2010). doi:10.1126/science.1185410

    PubMed  CAS  Google Scholar 

  6. Plotkin, S.A.: Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 17, 1055–1065 (2010). doi:10.1128/CVI.00131-10

    PubMed  CAS  Google Scholar 

  7. Florens, L., et al.: A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002). doi:10.1038/nature01107

    PubMed  CAS  Google Scholar 

  8. Gardner, M.J., et al.: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002). doi:10.1038/nature01097

    PubMed  CAS  Google Scholar 

  9. Scherf, A., Lopez-Rubio, J.J., Riviere, L.: Antigenic variation in Plasmodium falciparum. Annu. Rev. Microbiol. 62, 445–470 (2008). doi:10.1146/annurev.micro.61.080706.093134

    PubMed  CAS  Google Scholar 

  10. Tyler, J.S., Treeck, M., Boothroyd, J.C.: Focus on the ringleader: the role of AMA1 in apicomplexan invasion and replication. Trends Parasitol. 27, 410–420 (2011). doi:10.1016/j.pt.2011.04.002

    PubMed  CAS  Google Scholar 

  11. Aly, A.S., Vaughan, A.M., Kappe, S.H.: Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol. 63, 195–221 (2009). doi:10.1146/annurev.micro.091208.073403

    PubMed  CAS  Google Scholar 

  12. Sidjanski, S., Vanderberg, J.P.: Delayed migration of Plasmodium sporozoites from the mosquito bite site to the blood. Am. J. Trop. Med. Hyg. 57, 426–429 (1997)

    PubMed  CAS  Google Scholar 

  13. Kebaier, C., Voza, T., Vanderberg, J.: Kinetics of mosquito-injected Plasmodium sporozoites in mice: fewer sporozoites are injected into sporozoite-immunized mice. PLoS Pathog. 5, e1000399 (2009). doi:10.1371/journal.ppat.1000399

    PubMed  Google Scholar 

  14. Frevert, U., et al.: Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol. 3, e192 (2005). doi:10.1371/journal.pbio.0030192

    PubMed  Google Scholar 

  15. Baum, J., et al.: A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J. Biol. Chem. 281, 5197–5208 (2006). doi:10.1074/jbc.M509807200

    PubMed  CAS  Google Scholar 

  16. Pradel, G., Garapaty, S., Frevert, U.: Proteoglycans mediate malaria sporozoite targeting to the liver. Mol. Microbiol. 45, 637–651 (2002)

    PubMed  CAS  Google Scholar 

  17. Robson, K.J., et al.: Thrombospondin-related adhesive protein (TRAP) of Plasmodium falciparum: expression during sporozoite ontogeny and binding to human hepatocytes. EMBO J. 14, 3883–3894 (1995)

    PubMed  CAS  Google Scholar 

  18. Kariu, T., Ishino, T., Yano, K., Chinzei, Y., Yuda, M.: CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol. Microbiol. 59, 1369–1379 (2006). doi:10.1111/j.1365-2958.2005.05024.x

    PubMed  CAS  Google Scholar 

  19. Bergmann-Leitner, E.S., et al.: Immunization with pre-erythrocytic antigen CelTOS from Plasmodium falciparum elicits cross-species protection against heterologous challenge with Plasmodium berghei. PLoS One 5, e12294 (2010). doi:10.1371/journal.pone.0012294

    PubMed  Google Scholar 

  20. Cowman, A.F., Crabb, B.S.: Invasion of red blood cells by malaria parasites. Cell 124, 755–766 (2006). doi:10.1016/j.cell.2006.02.006

    PubMed  CAS  Google Scholar 

  21. Lindner, S.E., Miller, J.L., Kappe, S.H.: Malaria parasite pre-erythrocytic infection: preparation meets opportunity. Cell. Microbiol. 14, 316–324 (2012). doi:10.1111/j.1462-5822.2011.01734.x

    PubMed  CAS  Google Scholar 

  22. Schofield, L., Grau, G.E.: Immunological cbrsprocesses in malaria pathogenesis. Nat. Rev. Immunol. 5, 722–735 (2005). doi:10.1038/nri1686

    PubMed  CAS  Google Scholar 

  23. Baer, K., Klotz, C., Kappe, S.H., Schnieder, T., Frevert, U.: Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathog. 3, e171 (2007). doi:10.1371/journal.ppat.0030171

    PubMed  Google Scholar 

  24. Sturm, A., et al.: Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313, 128–1290 (2006). doi:10.1126/science.1129720

    Google Scholar 

  25. Lyke, K.E., et al.: Cell-mediated immunity elicited by the blood stage malaria vaccine apical membrane antigen 1 in Malian adults: results of a Phase I randomized trial. Vaccine 27, 2171–2176 (2009). doi:10.1016/j.vaccine.2009.01.097

    PubMed  CAS  Google Scholar 

  26. Thera, M.A., et al.: A field trial to assess a blood-stage malaria vaccine. N. Engl. J. Med. 365, 1004–1013 (2011). doi:10.1056/NEJMoa1008115

    PubMed  CAS  Google Scholar 

  27. Draper, S.J., et al.: Recombinant viral vaccines expressing merozoite surface protein-1 induce antibody- and T cell-mediated multistage protection against malaria. Cell Host Microbe 5, 95–105 (2009). doi:10.1016/j.chom.2008.12.004

    PubMed  CAS  Google Scholar 

  28. Duncan, C.J., et al.: Impact on malaria parasite multiplication rates in infected volunteers of the protein-in-adjuvant vaccine AMA1-C1/Alhydrogel + CPG 7909. PLoS One 6, e22271 (2011). doi:10.1371/journal.pone.0022271

    PubMed  CAS  Google Scholar 

  29. Lusingu, J.P., et al.: Satisfactory safety and immunogenicity of MSP3 malaria vaccine candidate in Tanzanian children aged 12-24 months. Malar. J. 8, 163 (2009). doi:10.1186/1475-2875-8-163

    PubMed  Google Scholar 

  30. Sirima, S.B., et al.: Safety and immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12-24 months-old Burkinabe children. PLoS One 4, e7549 (2009). doi:10.1371/journal.pone.0007549

    PubMed  Google Scholar 

  31. El Sahly, H.M., et al.: Safety and immunogenicity of a recombinant nonglycosylated erythrocyte binding antigen 175 region II malaria vaccine in healthy adults living in an area where malaria is not endemic. Clin. Vaccine Immunol. 17, 1552–1559 (2010). doi:10.1128/CVI.00082-10

    PubMed  Google Scholar 

  32. Chowdhury, D.R., Angov, E., Kariuki, T., Kumar, N.: A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli. PLoS One 4, e6352 (2009). doi:10.1371/journal.pone.0006352

    PubMed  Google Scholar 

  33. Kaslow, D.C., Quakyi, I.A., Keister, D.B.: Minimal variation in a vaccine candidate from the sexual stage of Plasmodium falciparum. Mol. Biochem. Parasitol. 32, 101–103 (1989)

    PubMed  CAS  Google Scholar 

  34. Carter, R., Mendis, K.N., Miller, L.H., Molineaux, L., Saul, A.: Malaria transmission-blocking vaccines–how can their development be supported? Nat. Med. 6, 241–244 (2000). doi:10.1038/73062

    PubMed  CAS  Google Scholar 

  35. Carlton, J.M., Sina, B.J., Adams, J.H.: Why is Plasmodium vivax a neglected tropical disease? PLoS Negl. Trop. Dis. 5, e1160 (2011). doi:10.1371/journal.pntd.0001160

    PubMed  Google Scholar 

  36. Miller, L.H., Mason, S.J., Clyde, D.F., McGinniss, M.H.: The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976). doi:10.1056/NEJM197608052950602

    PubMed  CAS  Google Scholar 

  37. Iyer, J., Gruner, A.C., Renia, L., Snounou, G., Preiser, P.R.: Invasion of host cells by malaria parasites: a tale of two protein families. Mol. Microbiol. 65, 231–249 (2007). doi:10.1111/j.1365-2958.2007.05791.x

    PubMed  CAS  Google Scholar 

  38. Marsh, K., Kinyanjui, S.: Immune effector mechanisms in malaria. Parasite Immunol. 28, 51–60 (2006). doi:10.1111/j.1365-3024.2006.00808.x

    PubMed  CAS  Google Scholar 

  39. Langhorne, J., Ndungu, F.M., Sponaas, A.M., Marsh, K.: Immunity to malaria: more questions than answers. Nat. Immunol. 9, 725–732 (2008). doi:10.1038/ni.f.205

    PubMed  CAS  Google Scholar 

  40. Beeson, J.G., Osier, F.H., Engwerda, C.R.: Recent insights into humoral and cellular immune responses against malaria. Trends Parasitol. 24, 578–584 (2008). doi:10.1016/j.pt.2008.08.008. S1471-4922(08)00226-2 [pii]

    PubMed  CAS  Google Scholar 

  41. Daily, J.P., et al.: Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature 450, 1091–1095 (2007). doi:10.1038/nature06311

    PubMed  CAS  Google Scholar 

  42. Lackritz, E.M., et al.: Effect of blood transfusion on survival among children in a Kenyan hospital. Lancet 340, 524–528 (1992)

    PubMed  CAS  Google Scholar 

  43. Marsh, K., et al.: Indicators of life-threatening malaria in African children. N. Engl. J. Med. 332, 1399–1404 (1995). doi:10.1056/NEJM199505253322102

    PubMed  CAS  Google Scholar 

  44. Brattig, N.W., et al.: Plasmodium falciparum glycosylphosphatidylinositol toxin interacts with the membrane of non-parasitized red blood cells: a putative mechanism contributing to malaria anemia. Microbes Infect. 10, 885–891 (2008). doi:10.1016/j.micinf.2008.05.002

    PubMed  CAS  Google Scholar 

  45. Naik, R.S., et al.: Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J. Exp. Med. 192, 1563–1576 (2000)

    PubMed  CAS  Google Scholar 

  46. Schofield, L., Hackett, F.: Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med. 177, 145–153 (1993)

    PubMed  CAS  Google Scholar 

  47. Tachado, S.D., et al.: Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc. Natl. Acad. Sci. U.S.A. 94, 4022–4027 (1997)

    PubMed  CAS  Google Scholar 

  48. Beeson, J.G., Brown, G.V.: Pathogenesis of Plasmodium falciparum malaria: the roles of parasite adhesion and antigenic variation. Cell. Mol. Life Sci. 59, 258–271 (2002)

    PubMed  CAS  Google Scholar 

  49. Schofield, L., Mueller, I.: Clinical immunity to malaria. Curr. Mol. Med. 6, 205–221 (2006)

    PubMed  CAS  Google Scholar 

  50. Fairhurst, R.M., Bess, C.D., Krause, M.A.: Abnormal PfEMP1/knob display on Plasmodium falciparum-infected erythrocytes containing hemoglobin variants: fresh insights into malaria pathogenesis and protection. Microbes Infect. 14, 851–862 (2012). doi:10.1016/j.micinf.2012.05.006

    PubMed  CAS  Google Scholar 

  51. Umbers, A.J., Aitken, E.H., Rogerson, S.J.: Malaria in pregnancy: small babies, big problem. Trends Parasitol. 27, 168–175 (2011). doi:10.1016/j.pt.2011.01.007

    PubMed  Google Scholar 

  52. World Health Organization: Malaria Vaccine Rainbow Table. <http://www.who.int/vaccine_research/links/Rainbow/en/index.html> (2012)

  53. Fedosov, D.A., Caswell, B., Suresh, S., Karniadakis, G.E.: Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc. Natl. Acad. Sci. U.S.A. 108, 35–39 (2011). doi:10.1073/pnas.1009492108

    PubMed  CAS  Google Scholar 

  54. Fedosov, D.A., Lei, H., Caswell, B., Suresh, S., Karniadakis, G.E.: Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput. Biol. 7, e1002270 (2011). doi:10.1371/journal.pcbi.1002270

    PubMed  CAS  Google Scholar 

  55. Howden, B.P., Vaddadi, G., Manitta, J., Grayson, M.L.: Chronic falciparum malaria causing massive splenomegaly 9 years after leaving an endemic area. Med. J. Aust. 182, 186–188 (2005)

    PubMed  Google Scholar 

  56. Hendriksen, I.C., et al.: Diagnosing severe falciparum malaria in parasitaemic African children: a prospective evaluation of plasma PfHRP2 measurement. PLoS Med. 9, e1001297 (2012). doi:10.1371/journal.pmed.1001297

    PubMed  CAS  Google Scholar 

  57. Snounou, G., et al.: High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 61, 315–320 (1993)

    PubMed  CAS  Google Scholar 

  58. Fairhurst, R.M., et al.: Artemisinin-resistant malaria: research challenges, opportunities, and public health implications. Am. J. Trop. Med. Hyg. 87, 231–241 (2012). doi:10.4269/ajtmh.2012.12-0025

    PubMed  Google Scholar 

  59. Clyde, D.F., Most, H., McCarthy, V.C., Vanderberg, J.P.: Immunization of man against sporozite-induced falciparum malaria. Am. J. Med. Sci. 266, 169–177 (1973)

    PubMed  CAS  Google Scholar 

  60. Baird, J.K., et al.: Age-dependent acquired protection against Plasmodium falciparum in people having 2 years exposure to hyperendemic malaria. Am. J. Trop. Med. Hyg. 45, 65–76 (1991)

    PubMed  CAS  Google Scholar 

  61. Gupta, S., Snow, R.W., Donnelly, C.A., Marsh, K., Newbold, C.: Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med. 5, 340–343 (1999). doi:10.1038/6560

    PubMed  CAS  Google Scholar 

  62. Cohen, S., Mc, G.I., Carrington, S.: Gamma-globulin and acquired immunity to human malaria. Nature 192, 733–737 (1961)

    PubMed  CAS  Google Scholar 

  63. Bousema, T., Drakeley, C.: Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 24, 377–410 (2011). doi:10.1128/CMR.00051-10

    PubMed  Google Scholar 

  64. Schmidt, N.W., Butler, N.S., Badovinac, V.P., Harty, J.T.: Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites. PLoS Pathog. 6, e1000998 (2010). doi:10.1371/journal.ppat.1000998

    PubMed  Google Scholar 

  65. Bejon, P., et al.: Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J. Infect. Dis. 191, 619–626 (2005). doi:10.1086/427243

    PubMed  Google Scholar 

  66. Gordon, D.M., et al.: Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J. Infect. Dis. 171, 1576–1585 (1995)

    PubMed  CAS  Google Scholar 

  67. Stoute, J.A., et al.: A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N. Engl. J. Med. 336, 86–91 (1997). doi:10.1056/NEJM199701093360202

    PubMed  CAS  Google Scholar 

  68. Garcon, N., Chomez, P., Van Mechelen, M.: GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines 6, 723–739 (2007). doi:10.1586/14760584.6.5.723

    PubMed  CAS  Google Scholar 

  69. Agnandji, S.T., et al.: First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 365, 1863–1875 (2011). doi:10.1056/NEJMoa1102287

    PubMed  Google Scholar 

  70. Kester, K.E., et al.: Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J. Infect. Dis. 200, 337–346 (2009). doi:10.1086/600120

    PubMed  CAS  Google Scholar 

  71. Gysin, J., Barnwell, J., Schlesinger, D.H., Nussenzweig, V., Nussenzweig, R.S.: Neutralization of the infectivity of sporozoites of Plasmodium knowlesi by antibodies to a synthetic peptide. J. Exp. Med. 160, 935–940 (1984)

    PubMed  CAS  Google Scholar 

  72. Plassmeyer, M.L., et al.: Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J. Biol. Chem. 284, 26951–26963 (2009). doi:10.1074/jbc.M109.013706

    PubMed  CAS  Google Scholar 

  73. Schwenk, R., et al.: Immunization with the RTS,S/AS malaria vaccine induces IFN-gamma(+)CD4 T cells that recognize only discrete regions of the circumsporozoite protein and these specificities are maintained following booster immunizations and challenge. Vaccine 29, 8847–8854 (2011). doi:10.1016/j.vaccine.2011.09.098

    PubMed  CAS  Google Scholar 

  74. Wang, R., et al.: Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282, 476–480 (1998)

    PubMed  CAS  Google Scholar 

  75. McConkey, S.J., et al.: Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med. 9, 729–735 (2003). doi:10.1038/nm881

    PubMed  CAS  Google Scholar 

  76. Hill, A.V., et al.: Prime-boost vectored malaria vaccines: progress and prospects. Hum. Vaccin. 6, 78–83 (2010)

    PubMed  CAS  Google Scholar 

  77. Dunachie, S.J., et al.: A DNA prime-modified vaccinia virus Ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge. Infect. Immun. 74, 5933–5942 (2006). doi:10.1128/IAI.00590-06

    PubMed  CAS  Google Scholar 

  78. Ockenhouse, C.F., et al.: Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J. Infect. Dis. 177, 1664–1673 (1998)

    PubMed  CAS  Google Scholar 

  79. Moorthy, V.S., et al.: A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLoS Med. 1, e33 (2004). doi:10.1371/journal.pmed.0010033

    PubMed  Google Scholar 

  80. Bejon, P., et al.: Extended follow-up following a phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS One 2, e707 (2007). doi:10.1371/journal.pone.0000707

    PubMed  Google Scholar 

  81. Webster, D.P., et al.: Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl. Acad. Sci. U.S.A. 102, 4836–4841 (2005). doi:10.1073/pnas.0406381102

    PubMed  CAS  Google Scholar 

  82. Ophorst, O.J., et al.: An adenoviral type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross neutralization, and immunogenicity. Vaccine 22, 3035–3044 (2004). doi:10.1016/j.vaccine.2004.02.011

    PubMed  CAS  Google Scholar 

  83. Lemckert, A.A., et al.: Immunogenicity of heterologous prime-boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-ad5 immunity. J. Virol. 79, 9694–9701 (2005). doi:10.1128/JVI.79.15.9694-9701.2005

    PubMed  CAS  Google Scholar 

  84. Radosevic, K., et al.: The Th1 immune response to Plasmodium falciparum circumsporozoite protein is boosted by adenovirus vectors 35 and 26 with a homologous insert. Clin. Vaccine Immunol. 17, 1687–1694 (2010). doi:10.1128/CVI.00311-10

    PubMed  CAS  Google Scholar 

  85. Clyde, D.F.: Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am. J. Trop. Med. Hyg. 24, 397–401 (1975)

    PubMed  CAS  Google Scholar 

  86. Hoffman, S.L., et al.: Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J. Infect. Dis. 185, 1155–1164 (2002). doi:10.1086/339409. JID010922 [pii]

    PubMed  Google Scholar 

  87. Krzych, U., Schwenk, J.: The dissection of CD8 T cells during liver-stage infection. Curr. Top. Microbiol. Immunol. 297, 1–24 (2005)

    PubMed  CAS  Google Scholar 

  88. Tsuji, M.: A retrospective evaluation of the role of T cells in the development of malaria vaccine. Exp. Parasitol. 126, 421–425 (2010). doi:10.1016/j.exppara.2009.11.009

    PubMed  CAS  Google Scholar 

  89. Overstreet, M.G., Cockburn, I.A., Chen, Y.C., Zavala, F.: Protective CD8 T cells against Plasmodium liver stages: immunobiology of an ‘unnatural’ immune response. Immunol. Rev. 225, 272–283 (2008). doi:10.1111/j.1600-065X.2008.00671.x

    PubMed  CAS  Google Scholar 

  90. Hafalla, J.C., Cockburn, I.A., Zavala, F.: Protective and pathogenic roles of CD8+ T cells during malaria infection. Parasite Immunol. 28, 15–24 (2006). doi:10.1111/j.1365-3024.2006.00777.x. PIM777 [pii]

    PubMed  CAS  Google Scholar 

  91. Mellouk, S., Lunel, F., Sedegah, M., Beaudoin, R.L., Druilhe, P.: Protection against malaria induced by irradiated sporozoites. Lancet 335, 721 (1990). 0140-6736(90)90832-P [pii]

    PubMed  CAS  Google Scholar 

  92. Chattopadhyay, R., et al.: The effects of radiation on the safety and protective efficacy of an attenuated Plasmodium yoelii sporozoite malaria vaccine. Vaccine 27, 3675–3680 (2006). doi:10.1016/j.vaccine.2008.11.073. S0264-410X(08)01596-X [pii]

    Google Scholar 

  93. Schmidt, N.W., Butler, N.S., Harty, J.T.: CD8 T cell immunity to Plasmodium permits generation of protective antibodies after repeated sporozoite challenge. Vaccine 27, 6103–6106 (2009). doi:10.1016/j.vaccine.2009.08.025. S0264-410X(09)01203-1 [pii]

    PubMed  CAS  Google Scholar 

  94. Crompton, P.D., Pierce, S.K., Miller, L.H.: Advances and challenges in malaria vaccine development. J. Clin. Invest. 120, 4168–4178 (2010). doi:10.1172/JCI44423. 44423 [pii]

    PubMed  CAS  Google Scholar 

  95. Epstein, J.E., et al.: Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science 334, 475–480 (2011). doi:10.1126/science.1211548

    PubMed  CAS  Google Scholar 

  96. Kappe, S.H., Vaughan, A.M., Boddey, J.A., Cowman, A.F.: That was then but this is now: malaria research in the time of an eradication agenda. Science 328, 862–866 (2010). doi:10.1126/science.1184785. 328/5980/862 [pii]

    PubMed  CAS  Google Scholar 

  97. Aly, A.S., et al.: Targeted deletion of SAP1 abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection. Mol. Microbiol. 69, 152–163 (2008). doi:10.1111/j.1365-2958.2008.06271.x. MMI6271 [pii]

    PubMed  CAS  Google Scholar 

  98. Vaughan, A.M., et al.: Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell. Microbiol. 11, 506–520 (2009). doi:10.1111/j.1462-5822.2008.01270.x

    PubMed  CAS  Google Scholar 

  99. Butler, N.S., et al.: Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host Microbe 9, 451–462 (2011). doi:10.1016/j.chom.2011.05.008. S1931-3128(11)00172-7 [pii]

    PubMed  CAS  Google Scholar 

  100. Roestenberg, M., et al.: Protection against a malaria challenge by sporozoite inoculation. N. Engl. J. Med. 361, 468–477 (2009). doi:10.1056/NEJMoa0805832

    PubMed  CAS  Google Scholar 

  101. Goodman, A.L., Draper, S.J.: Blood-stage malaria vaccines – recent progress and future challenges. Ann. Trop. Med. Parasitol. 104, 189–211 (2010). doi:10.1179/136485910X12647085215534

    PubMed  CAS  Google Scholar 

  102. Genton, B., Reed, Z.H.: Asexual blood-stage malaria vaccine development: facing the challenges. Curr. Opin. Infect. Dis. 20, 467–475 (2007). doi:10.1097/QCO.0b013e3282dd7a29

    PubMed  Google Scholar 

  103. Greenwood, B.M., Targett, G.A.: Malaria vaccines and the new malaria agenda. Clin. Microbiol. Infect. 17, 1600–1607 (2011). doi:10.1111/j.1469-0691.2011.03612.x

    PubMed  CAS  Google Scholar 

  104. Hill, A.V.: Vaccines against malaria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2806–2814 (2011). doi:10.1098/rstb.2011.0091

    PubMed  Google Scholar 

  105. Doolan, D.L., Dobano, C., Baird, J.K.: Acquired immunity to malaria. Clin. Microbiol. Rev. 22, 13–36 (2009). doi:10.1128/CMR.00025-08. Table of Contents

    PubMed  CAS  Google Scholar 

  106. Volkman, S.K., Neafsey, D.E., Schaffner, S.F., Park, D.J., Wirth, D.F.: Harnessing genomics and genome biology to understand malaria biology. Nat. Rev. Genet. 13, 315–328 (2012). doi:10.1038/nrg3187. nrg3187 [pii]

    PubMed  CAS  Google Scholar 

  107. Doolan, D.L.: Plasmodium immunomics. Int. J. Parasitol. 41, 3–20 (2011). doi:10.1016/j.ijpara.2010.08.002, S0020-7519(10)00289-4 [pii]

    PubMed  CAS  Google Scholar 

  108. Sedegah, M., et al.: Adenovirus 5-vectored P. falciparum vaccine expressing CSP and AMA1. Part A: safety and immunogenicity in seronegative adults. PLoS One 6, e24586 (2011)

    PubMed  CAS  Google Scholar 

  109. Tamminga, C., et al.: Adenovirus-5-vectored P. falciparum vaccine expressing CSP and AMA1. Part B: safety, immunogenicity and protective efficacy of the CSP component. PLoS One 6, e25868 (2011)

    PubMed  CAS  Google Scholar 

  110. Bakshi, S., Imoukhuede, E.B.: Malaria Vectored Vaccines Consortium (MVVC). Hum. Vaccin. 6, 433–434 (2010)

    PubMed  Google Scholar 

  111. Spring, M.D., et al.: Phase 1/2a study of the malaria vaccine candidate apical membrane antigen-1 (AMA-1) administered in adjuvant system AS01B or AS02A. PLoS One 4, e5254 (2009). doi:10.1371/journal.pone.0005254

    PubMed  Google Scholar 

  112. Lyon, J.A., et al.: Protection induced by Plasmodium falciparum MSP1(42) is strain-specific, antigen and adjuvant dependent, and correlates with antibody responses. PLoS One 3, e2830 (2008). doi:10.1371/journal.pone.0002830

    PubMed  Google Scholar 

  113. Thera, M.A., et al.: Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: results of a phase 1 randomized controlled trial. PLoS One 3, e1465 (2008). doi:10.1371/journal.pone.0001465

    PubMed  Google Scholar 

  114. Nebie, I., et al.: Humoral and cell-mediated immunity to MSP3 peptides in adults immunized with MSP3 in malaria endemic area, Burkina Faso. Parasite Immunol. 31, 474–480 (2009). doi:10.1111/j.1365-3024.2009.01130.x

    PubMed  CAS  Google Scholar 

  115. Peek, L.J., Brandau, D.T., Jones, L.S., Joshi, S.B., Middaugh, C.R.: A systematic approach to stabilizing EBA-175 RII-NG for use as a malaria vaccine. Vaccine 24, 5839–5851 (2006). doi:10.1016/j.vaccine.2006.04.067

    PubMed  CAS  Google Scholar 

  116. Horii, T., et al.: Evidences of protection against blood-stage infection of Plasmodium falciparum by the novel protein vaccine SE36. Parasitol. Int. 59, 380–386 (2010). doi:10.1016/j.parint.2010.05.002

    PubMed  CAS  Google Scholar 

  117. Belard, S., et al.: A randomized controlled phase Ib trial of the malaria vaccine candidate GMZ2 in African children. PLoS One 6, e22525 (2011). doi:10.1371/journal.pone.0022525

    PubMed  CAS  Google Scholar 

  118. Mordmuller, B., et al.: Safety and immunogenicity of the malaria vaccine candidate GMZ2 in malaria-exposed, adult individuals from Lambarene, Gabon. Vaccine 28, 6698–6703 (2010). doi:10.1016/j.vaccine.2010.07.085

    PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Dr. Nathan Schmidt for his critical reading of the manuscript and Dr. Jessica Wood for her critical reading of the manuscript and the artwork in Fig. 12.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah S. Butler PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Butler, N.S. (2013). Vaccination Against Malaria Parasites: Paradigms, Perils, and Progress. In: Giese, M. (eds) Molecular Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1419-3_12

Download citation

Publish with us

Policies and ethics