Skip to main content

Treatment with Thiazolidinediones

  • Chapter
  • First Online:
The Metabolic Syndrome

Abstract

Thiazolidinediones are peroxisome proliferator-activated receptor (PPAR)-gamma agonists that have been commonly used in the treatment of type 2 diabetes. They have also been considered for use in individuals with metabolic syndrome as they target a number of components of the syndrome through their multiple actions that include improvements in insulin sensitivity and glycaemic control, adipocyte maturation and aspects of lipid metabolism. However, the thiazolidinediones have also been associated with a number of adverse outcomes, including effects on the cardiovascular system and bone, which have limited their use in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tjokroprawiro A (2006) New approach in the treatment of T2DM and metabolic syndrome (focus on a novel insulin sensitizer). Acta Med Indones 38(3):160–166

    PubMed  Google Scholar 

  2. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356(24):2457–2471

    Article  PubMed  CAS  Google Scholar 

  3. Update on ongoing European review of pioglitazone–containing medicines. 2011 [cited 2012 September 28]; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2011/06/WC500107515.pdf.

  4. Sakamoto J, Kimura H, Moriyama S, Odaka H, Momose Y, Sugiyama Y et al (2000) Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 278(3):704–711

    Article  PubMed  CAS  Google Scholar 

  5. Kendall DM, Rubin CJ, Mohideen P, Ledeine JM, Belder R, Gross J et al (2006) Improvement of glycemic control, triglycerides, and HDL cholesterol levels with muraglitazar, a dual (alpha/gamma) peroxisome proliferator-activated receptor activator, in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a double-blind, randomized, pioglitazone-comparative study. Diabetes Care 29(5):1016–1023

    Article  PubMed  CAS  Google Scholar 

  6. Nissen SE, Wolski K, Topol EJ (2005) Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 294(20):2581–2586

    Article  PubMed  CAS  Google Scholar 

  7. Wilding JP (2012) PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes Obes Metab 14(11):973–982

    Article  PubMed  CAS  Google Scholar 

  8. Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26(5):244–251

    Article  PubMed  CAS  Google Scholar 

  9. Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2(4):236–240

    Article  PubMed  CAS  Google Scholar 

  10. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650

    Article  PubMed  CAS  Google Scholar 

  11. Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K et al (1995) Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr 4(4–5):281–299

    PubMed  CAS  Google Scholar 

  12. Hansen JB, Zhang H, Rasmussen TH, Petersen RK, Flindt EN, Kristiansen K (2001) Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. J Biol Chem 276(5): 3175–3182

    Article  PubMed  CAS  Google Scholar 

  13. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF et al (1997) Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 99(10): 2416–2422

    Article  PubMed  CAS  Google Scholar 

  14. Dubois M, Pattou F, Kerr-Conte J, Gmyr V, Vandewalle B, Desreumaux P et al (2000) Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal human pancreatic islet cells. Diabetologia 43(9):1165–1169

    Article  PubMed  CAS  Google Scholar 

  15. Wang N, Verna L, Chen NG, Chen J, Li H, Forman BM et al (2002) Constitutive activation of peroxisome proliferator-activated receptor-gamma suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells. J Biol Chem 277(37):34176–34181

    Article  PubMed  CAS  Google Scholar 

  16. Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z et al (1998) Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273(40):25573–25580

    Article  PubMed  CAS  Google Scholar 

  17. Sarruf DA, Yu F, Nguyen HT, Williams DL, Printz RL, Niswender KD et al (2009) Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis. Endocrinology 150(2):707–712

    Article  PubMed  CAS  Google Scholar 

  18. Mukherjee R, Jow L, Noonan D, McDonnell DP (1994) Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators. J Steroid Biochem Mol Biol 51(3–4):157–166

    Article  PubMed  CAS  Google Scholar 

  19. Barbier O, Torra IP, Duguay Y, Blanquart C, Fruchart JC, Glineur C et al (2002) Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 22(5):717–726

    Article  PubMed  CAS  Google Scholar 

  20. Loviscach M, Rehman N, Carter L, Mudaliar S, Mohadeen P, Ciaraldi TP et al (2000) Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 43(3):304–311

    Article  PubMed  CAS  Google Scholar 

  21. Kang HY, Chung E, Lee M, Cho Y, Kang WH (2004) Expression and function of peroxisome proliferator-activated receptors in human melanocytes. Br J Dermatol 150(3):462–468

    Article  PubMed  CAS  Google Scholar 

  22. Chattopadhyay N, Singh DP, Heese O, Godbole MM, Sinohara T, Black PM et al (2000) Expression of peroxisome proliferator-activated receptors (PPARS) in human astrocytic cells: PPAR gamma agonists as inducers of apoptosis. J Neurosci Res 61(1):67–74

    Article  PubMed  CAS  Google Scholar 

  23. Ooi EM, Watts GF, Sprecher DL, Chan DC, Barrett PH (2011) Mechanism of action of a peroxisome proliferator-activated receptor (PPAR)-delta agonist on lipoprotein metabolism in dyslipidemic subjects with central obesity. J Clin Endocrinol Metab 96(10):E1568–E1576

    Article  PubMed  CAS  Google Scholar 

  24. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358(6389):771–774

    Article  PubMed  CAS  Google Scholar 

  25. Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351(11):1106–1118

    Article  PubMed  Google Scholar 

  26. Oberfield JL, Collins JL, Holmes CP, Goreham DM, Cooper JP, Cobb JE et al (1999) A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci USA 96(11):6102–6106

    Article  PubMed  CAS  Google Scholar 

  27. Laplante M, Festuccia WT, Soucy G, Gelinas Y, Lalonde J, Berger JP et al (2006) Mechanisms of the depot specificity of peroxisome proliferator-activated receptor gamma action on adipose tissue metabolism. Diabetes 55(10):2771–2778

    Article  PubMed  CAS  Google Scholar 

  28. Kang JG, Park CY, Ihm SH, Yoo HJ, Park H, Rhee EJ et al (2010) Mechanisms of adipose tissue redistribution with rosiglitazone treatment in various adipose depots. Metabolism 59(1):46–53

    Article  PubMed  CAS  Google Scholar 

  29. de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Laurent D et al (2001) Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 50(8):1863–1871

    Article  PubMed  Google Scholar 

  30. Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K et al (2002) Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 87(6):2784–2791

    Article  PubMed  CAS  Google Scholar 

  31. Tiikkainen M, Hakkinen AM, Korsheninnikova E, Nyman T, Makimattila S, Yki-Jarvinen H (2004) Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes 53(8):2169–2176

    Article  PubMed  CAS  Google Scholar 

  32. Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21(6):697–738

    Article  PubMed  CAS  Google Scholar 

  33. Bajaj M, Baig R, Suraamornkul S, Hardies LJ, Coletta DK, Cline GW et al (2010) Effects of pioglitazone on intramyocellular fat metabolism in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(4):1916–1923

    Article  PubMed  CAS  Google Scholar 

  34. Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296(4):E581–E591

    Article  PubMed  CAS  Google Scholar 

  35. Barthel A, Schmoll D (2003) Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 285(4):E685–E692

    PubMed  CAS  Google Scholar 

  36. Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32(Suppl 3):14–23

    Article  PubMed  CAS  Google Scholar 

  37. Bays H, Mandarino L, DeFronzo RA (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89(2): 463–478

    Article  PubMed  CAS  Google Scholar 

  38. Freedland ES (2004) Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr Metab (Lond) 1(1):12

    Article  CAS  Google Scholar 

  39. Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M et al (2002) The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 51(10):2968–2974

    Article  PubMed  CAS  Google Scholar 

  40. Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29(24):2959–2971

    Article  PubMed  CAS  Google Scholar 

  41. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE et al (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86(5):1930–1935

    Article  PubMed  CAS  Google Scholar 

  42. Ai M, Otokozawa S, Asztalos BF, White CC, Cupples LA, Nakajima K et al (2011) Adiponectin: an independent risk factor for coronary heart disease in men in the Framingham Offspring Study. Atherosclerosis 217(2):543–548

    Article  PubMed  CAS  Google Scholar 

  43. Samaha FF, Szapary PO, Iqbal N, Williams MM, Bloedon LT, Kochar A et al (2006) Effects of rosiglitazone on lipids, adipokines, and inflammatory markers in nondiabetic patients with low high-density lipoprotein cholesterol and metabolic syndrome. Arterioscler Thromb Vasc Biol 26(3):624–630

    Article  PubMed  CAS  Google Scholar 

  44. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP (1992) Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 41(6):715–722

    Article  PubMed  CAS  Google Scholar 

  45. Weyer C, Bogardus C, Mott DM, Pratley RE (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104(6):787–794

    Article  PubMed  CAS  Google Scholar 

  46. Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N et al (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368(9541):1096–1105

    Article  PubMed  CAS  Google Scholar 

  47. Knowler WC, Hamman RF, Edelstein SL, Barrett-Connor E, Ehrmann DA, Walker EA et al (2005) Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 54(4):1150–1156

    Article  PubMed  Google Scholar 

  48. DeFronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA et al (2011) Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 364(12): 1104–1115

    Article  PubMed  CAS  Google Scholar 

  49. Ravikumar B, Gerrard J, Dalla Man C, Firbank MJ, Lane A, English PT et al (2008) Pioglitazone decreases fasting and postprandial endogenous glucose production in proportion to decrease in hepatic triglyceride content. Diabetes 57(9):2288–2295

    Article  PubMed  CAS  Google Scholar 

  50. Goldberg RB, Temprosa M, Haffner S, Orchard TJ, Ratner RE, Fowler SE et al (2009) Effect of progression from impaired glucose tolerance to diabetes on cardiovascular risk factors and its amelioration by lifestyle and metformin intervention. Diabetes Care 32(4):726–732

    Article  PubMed  CAS  Google Scholar 

  51. Gerstein HC, Mohan V, Avezum A, Bergenstal RM, Chiasson JL, Garrido M et al (2011) Long-term effect of rosiglitazone and/or ramipril on the incidence of diabetes. Diabetologia 54(3):487–495

    Article  PubMed  CAS  Google Scholar 

  52. Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J et al (2002) Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 51(9):2796–2803

    Article  PubMed  CAS  Google Scholar 

  53. Zinman B, Harris SB, Neuman J, Gerstein HC, Retnakaran RR, Raboud J et al (2010) Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (CANOE trial): a double-blind randomised controlled study. Lancet 376(9735): 103–111

    Article  PubMed  CAS  Google Scholar 

  54. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX et al (1997) Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20(4):537–544

    Article  PubMed  CAS  Google Scholar 

  55. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V et al (2006) The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 49(2):289–297

    Article  PubMed  CAS  Google Scholar 

  56. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403

    Article  PubMed  CAS  Google Scholar 

  57. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344(18):1343–1350

    Article  PubMed  CAS  Google Scholar 

  58. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M et al (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359(9323):2072–2077

    Article  PubMed  CAS  Google Scholar 

  59. Gerstein HC, Bosch J, Dagenais GR, Diaz R, Jung H, Maggioni AP et al (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367(4):319–328

    Article  PubMed  CAS  Google Scholar 

  60. Lorenzo C, Williams K, Hunt KJ, Haffner SM (2007) The National Cholesterol Education Program—Adult Treatment Panel III, International Diabetes Federation, and World Health Organization definitions of the metabolic syndrome as predictors of incident cardiovascular disease and diabetes. Diabetes Care 30(1):8–13

    Article  PubMed  Google Scholar 

  61. Pittas AG, Greenberg AS (2002) Thiazolidinediones in the treatment of type 2 diabetes. Expert Opin Pharmacother 3(5):529–540

    Article  PubMed  CAS  Google Scholar 

  62. Lebovitz HE, Dole JF, Patwardhan R, Rappaport EB, Freed MI, Rosiglitazone Clinical Trials Study Group (2001) Rosiglitazone monotherapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab 86(1):280–288

    Article  PubMed  CAS  Google Scholar 

  63. Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL, Schneider RL, The Pioglitazone 001 Study Group (2000) Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose–response study. Diabetes Care 23(11):1605–1611

    Article  PubMed  CAS  Google Scholar 

  64. Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, Raskin P et al (2009) Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 32(7): 1224–1230

    Article  PubMed  CAS  Google Scholar 

  65. Einhorn D, Rendell M, Rosenzweig J, Egan JW, Mathisen AL, Schneider RL (2000) Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. Clin Ther 22(12):1395–1409

    Article  PubMed  CAS  Google Scholar 

  66. Papanas N, Katsiki N, Hatzitolios AI, Maltezos E (2011) Pioglitazone: a valuable component of combination therapy for type 2 diabetes mellitus. Expert Opin Pharmacother 12(10): 1457–1461

    Article  PubMed  CAS  Google Scholar 

  67. Shah PK, Mudaliar S, Chang AR, Aroda V, Andre M, Burke P et al (2011) Effects of intensive insulin therapy alone and in combination with pioglitazone on body weight, composition, distribution and liver fat content in patients with type 2 diabetes. Diabetes Obes Metab 13(6):505–510

    Article  PubMed  CAS  Google Scholar 

  68. Goldstein BJ (2002) Differentiating members of the thiazolidinedione class: a focus on efficacy. Diabetes Metab Res Rev 18(Suppl 2):S16–S22

    Article  PubMed  CAS  Google Scholar 

  69. Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R et al (2011) Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med 154(9):602–613

    PubMed  Google Scholar 

  70. Raskin P, Rendell M, Riddle MC, Dole JF, Freed MI, Rosenstock J et al (2001) A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 24(7):1226–1232

    Article  PubMed  CAS  Google Scholar 

  71. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23): 2427–2443

    Article  PubMed  CAS  Google Scholar 

  72. Kahn SE, Lachin JM, Zinman B, Haffner SM, Aftring RP, Paul G et al (2011) Effects of rosiglitazone, glyburide, and metformin on beta-cell function and insulin sensitivity in ADOPT. Diabetes 60(5):1552–1560

    Article  PubMed  CAS  Google Scholar 

  73. Group TS, Zeitler P, Hirst K, Pyle L, Linder B, Copeland K et al (2012) A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med 366(24):2247–2256

    Article  Google Scholar 

  74. Weycker D, Nichols GA, O’Keeffe-Rosetti M, Edelsberg J, Khan ZM, Kaura S et al (2007) Risk-factor clustering and cardiovascular disease risk in hypertensive patients. Am J Hypertens 20(6):599–607

    Article  PubMed  Google Scholar 

  75. Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L et al (1987) Insulin resistance in essential hypertension. N Engl J Med 317(6):350–357

    Article  PubMed  CAS  Google Scholar 

  76. Potenza MA, Gagliardi S, Nacci C, Carratu MR, Montagnani M (2009) Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem 16(1):94–112

    Article  PubMed  CAS  Google Scholar 

  77. Walker AB, Chattington PD, Buckingham RE, Williams G (1999) The thiazolidinedione rosiglitazone (BRL-49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 48(7):1448–1453

    Article  PubMed  CAS  Google Scholar 

  78. El-Atat FA, Stas SN, McFarlane SI, Sowers JR (2004) The relationship between hyperinsulinemia, hypertension and progressive renal disease. J Am Soc Nephrol 15(11): 2816–2827

    Article  PubMed  Google Scholar 

  79. Martens FM, Visseren FL, de Koning EJ, Rabelink TJ (2005) Short-term pioglitazone treatment improves vascular function irrespective of metabolic changes in patients with type 2 diabetes. J Cardiovasc Pharmacol 46(6):773–778

    Article  PubMed  CAS  Google Scholar 

  80. Horio T, Suzuki M, Takamisawa I, Suzuki K, Hiuge A, Yoshimasa Y et al (2005) Pioglitazone-induced insulin sensitization improves vascular endothelial function in nondiabetic patients with essential hypertension. Am J Hypertens 18(12 Pt 1):1626–1630

    Article  PubMed  CAS  Google Scholar 

  81. Sarafidis PA, Lasaridis AN (2006) Actions of peroxisome proliferator-activated receptors-gamma agonists explaining a possible blood pressure-lowering effect. Am J Hypertens 19(6): 646–653

    Article  PubMed  CAS  Google Scholar 

  82. Raji A, Seely EW, Bekins SA, Williams GH, Simonson DC (2003) Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care 26(1): 172–178

    Article  PubMed  CAS  Google Scholar 

  83. Yosefy C, Magen E, Kiselevich A, Priluk R, London D, Volchek L et al (2004) Rosiglitazone improves, while glibenclamide worsens blood pressure control in treated hypertensive diabetic and dyslipidemic subjects via modulation of insulin resistance and sympathetic activity. J Cardiovasc Pharmacol 44(2):215–222

    Article  PubMed  CAS  Google Scholar 

  84. Li GW, Wang JP, Li CM, Chen YY, Yang WY, Xing XY et al (2004) Anti-hypertensive effect of rosiglitazone in non-diabetic essential hypertension. CJIM 43(12):907–910

    Google Scholar 

  85. Sarafidis PA, Lasaridis AN, Nilsson PM, Pagkalos EM, Hitoglou-Makedou AD, Pliakos CI et al (2004) Ambulatory blood pressure reduction after rosiglitazone treatment in patients with type 2 diabetes and hypertension correlates with insulin sensitivity increase. J Hypertens 22(9):1769–1777

    Article  PubMed  CAS  Google Scholar 

  86. Gerber P, Lubben G, Heusler S, Dodo A (2003) Effects of pioglitazone on metabolic control and blood pressure: a randomised study in patients with type 2 diabetes mellitus. Curr Med Res Opin 19(6):532–539

    Article  PubMed  CAS  Google Scholar 

  87. Langenfeld MR, Forst T, Hohberg C, Kann P, Lubben G, Konrad T et al (2005) Pioglitazone decreases carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus: results from a controlled randomized study. Circulation 111(19):2525–2531

    Article  PubMed  CAS  Google Scholar 

  88. Fullert S, Schneider F, Haak E, Rau H, Badenhoop K, Lubben G et al (2002) Effects of pioglitazone in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study. J Clin Endocrinol Metab 87(12):5503–5506

    Article  PubMed  CAS  Google Scholar 

  89. Derosa G, Cicero AF, Dangelo A, Gaddi A, Ragonesi PD, Piccinni MN et al (2005) Thiazolidinedione effects on blood pressure in diabetic patients with metabolic syndrome treated with glimepiride. Hypertens Res 28(11):917–924

    Article  PubMed  CAS  Google Scholar 

  90. Derosa G, Fogari E, Cicero AF, D’Angelo A, Ciccarelli L, Piccinni MN et al (2007) Blood pressure control and inflammatory markers in type 2 diabetic patients treated with pioglitazone or rosiglitazone and metformin. Hypertens Res 30(5):387–394

    Article  PubMed  CAS  Google Scholar 

  91. Scott R, Donoghoe M, Watts GF, O’Brien R, Pardy C, Taskinen MR et al (2011) Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovasc Diabetol 10:102

    Article  PubMed  CAS  Google Scholar 

  92. Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA et al (2005) A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 28(7):1547–1554

    Article  PubMed  CAS  Google Scholar 

  93. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A et al (2008) Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299(13):1561–1573

    Article  PubMed  CAS  Google Scholar 

  94. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366(9493):1279–1289

    Article  PubMed  CAS  Google Scholar 

  95. Vijay SK, Mishra M, Kumar H, Tripathi K (2009) Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol 46(1):27–33

    Article  PubMed  CAS  Google Scholar 

  96. Punthakee Z, Bosch J, Dagenais G, Diaz R, Holman R, Probstfield J et al (2012) Design, history and results of the Thiazolidinedione Intervention with vitamin D Evaluation (TIDE) randomised controlled trial. Diabetologia 55(1):36–45

    Article  PubMed  CAS  Google Scholar 

  97. Millar JS, Ikewaki K, Bloedon LT, Wolfe ML, Szapary PO, Rader DJ (2011) Effect of rosiglitazone on HDL metabolism in subjects with metabolic syndrome and low HDL. J Lipid Res 52(1):136–142

    Article  PubMed  CAS  Google Scholar 

  98. Szapary PO, Bloedon LT, Samaha FF, Duffy D, Wolfe ML, Soffer D et al (2006) Effects of pioglitazone on lipoproteins, inflammatory markers, and adipokines in nondiabetic patients with metabolic syndrome. Arterioscler Thromb Vasc Biol 26(1):182–188

    Article  PubMed  CAS  Google Scholar 

  99. Murdock DK, Jansen D, Juza RM, Kersten M, Olson K, Hendricks B (2006) Benefit of adding pioglitazone to statin therapy in non-diabetic patients with the metabolic syndrome. WMJ 105(5):22–25

    PubMed  Google Scholar 

  100. Brunzell JD, Ayyobi AF (2003) Dyslipidemia in the metabolic syndrome and type 2 diabetes mellitus. Am J Med 115(Suppl 8A):24S–28S

    Article  PubMed  CAS  Google Scholar 

  101. Kathiresan S, Otvos JD, Sullivan LM, Keyes MJ, Schaefer EJ, Wilson PW et al (2006) Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation 113(1):20–29

    Article  PubMed  CAS  Google Scholar 

  102. Brunzell JD (2005) Increased ApoB in small dense LDL particles predicts premature coronary artery disease. Arterioscler Thromb Vasc Biol 25(3):474–475

    Article  PubMed  CAS  Google Scholar 

  103. Yu D, Murdoch SJ, Parikh SJ, Marcovina SM, Cobitz A, Chen H et al (2006) Rosiglitazone increases LDL particle size and buoyancy and decreases C-reactive protein in patients with type 2 diabetes on statin therapy. Diab Vasc Dis Res 3(3):189–196

    Article  PubMed  Google Scholar 

  104. Freed MI, Ratner R, Marcovina SM, Kreider MM, Biswas N, Cohen BR et al (2002) Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus. Am J Cardiol 90(9):947–952

    Article  PubMed  CAS  Google Scholar 

  105. Winkelmayer WC, Setoguchi S, Levin R, Solomon DH (2008) Comparison of cardiovascular outcomes in elderly patients with diabetes who initiated rosiglitazone vs pioglitazone therapy. Arch Intern Med 168(21):2368–2375

    Article  PubMed  Google Scholar 

  106. Despres JP (2012) Body fat distribution and risk of cardiovascular disease: an update. Circulation 126(10):1301–1313

    Article  PubMed  Google Scholar 

  107. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG et al (2007) Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation 116(11): 1234–1241

    Article  PubMed  CAS  Google Scholar 

  108. Liu J, Fox CS, Hickson DA, May WD, Hairston KG, Carr JJ et al (2010) Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J Clin Endocrinol Metab 95(12):5419–5426

    Article  PubMed  CAS  Google Scholar 

  109. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD et al (2004) Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 53(8): 2087–2094

    Article  PubMed  CAS  Google Scholar 

  110. Kushner RF, Sujak M (2009) Prevention of weight gain in adult patients with type 2 diabetes treated with pioglitazone. Obesity 17(5):1017–1022

    Article  PubMed  CAS  Google Scholar 

  111. Charbonnel B, DeFronzo R, Davidson J, Schmitz O, Birkeland K, Pirags V et al (2010) Pioglitazone use in combination with insulin in the prospective pioglitazone clinical trial in macrovascular events study (PROactive19). J Clin Endocrinol Metab 95(5):2163–2171

    Article  PubMed  CAS  Google Scholar 

  112. Smith SR, De Jonge L, Volaufova J, Li Y, Xie H, Bray GA (2005) Effect of pioglitazone on body composition and energy expenditure: a randomized controlled trial. Metabolism 54(1): 24–32

    Article  PubMed  CAS  Google Scholar 

  113. Moon JH, Kim HJ, Kim SK, Kang ES, Lee BW, Ahn CW et al (2011) Fat redistribution preferentially reflects the anti-inflammatory benefits of pioglitazone treatment. Metabolism 60(2):165–172

    Article  PubMed  CAS  Google Scholar 

  114. McLaughlin TM, Liu T, Yee G, Abbasi F, Lamendola C, Reaven GM et al (2010) Pioglitazone increases the proportion of small cells in human abdominal subcutaneous adipose tissue. Obesity 18(5):926–931

    Article  PubMed  CAS  Google Scholar 

  115. Romeo GR, Lee J, Shoelson SE (2012) Metabolic syndrome, insulin resistance, and roles of inflammation—mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol 32(8): 1771–1776

    Article  PubMed  CAS  Google Scholar 

  116. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312

    Article  PubMed  CAS  Google Scholar 

  117. Unal R, Yao-Borengasser A, Varma V, Rasouli N, Labbate C, Kern PA et al (2010) Matrix metalloproteinase-9 is increased in obese subjects and decreases in response to pioglitazone. J Clin Endocrinol Metab 95(6):2993–3001

    Article  PubMed  CAS  Google Scholar 

  118. Bremer AA, Devaraj S, Afify A, Jialal I (2011) Adipose tissue dysregulation in patients with metabolic syndrome. J Clin Endocrinol Metab 96(11):E1782–E1788

    Article  PubMed  CAS  Google Scholar 

  119. Rutter MK, Meigs JB, Sullivan LM, D’Agostino RB Sr, Wilson PW (2004) C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 110(4):380–385

    Article  PubMed  CAS  Google Scholar 

  120. Dehghan A, van Hoek M, Sijbrands EJ, Stijnen T, Hofman A, Witteman JC (2007) Risk of type 2 diabetes attributable to C-reactive protein and other risk factors. Diabetes Care 30(10): 2695–2699

    Article  PubMed  CAS  Google Scholar 

  121. Shishehbor MH, Bhatt DL, Topol EJ (2003) Using C-reactive protein to assess cardiovascular disease risk. Cleve Clin J Med 70(7):634–640

    Article  PubMed  Google Scholar 

  122. Kahn SE, Haffner SM, Viberti G, Herman WH, Lachin JM, Kravitz BG et al (2010) Rosiglitazone decreases C-reactive protein to a greater extent relative to glyburide and metformin over 4 years despite greater weight gain: observations from a Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 33(1):177–183

    Article  PubMed  CAS  Google Scholar 

  123. Kahn SE, Zinman B, Haffner SM, O’Neill MC, Kravitz BG, Yu D et al (2006) Obesity is a major determinant of the association of C-reactive protein levels and the metabolic syndrome in type 2 diabetes. Diabetes 55(8):2357–2364

    Article  PubMed  CAS  Google Scholar 

  124. Esposito K, Ciotola M, Carleo D, Schisano B, Saccomanno F, Sasso FC et al (2006) Effect of rosiglitazone on endothelial function and inflammatory markers in patients with the metabolic syndrome. Diabetes Care 29(5):1071–1076

    Article  PubMed  CAS  Google Scholar 

  125. Bahia L, Aguiar LG, Villela N, Bottino D, Godoy-Matos AF, Geloneze B et al (2007) Adiponectin is associated with improvement of endothelial function after rosiglitazone treatment in non-diabetic individuals with metabolic syndrome. Atherosclerosis 195(1): 138–146

    Article  PubMed  CAS  Google Scholar 

  126. Kim SG, Ryu OH, Kim HY, Lee KW, Seo JA, Kim NH et al (2006) Effect of rosiglitazone on plasma adiponectin levels and arterial stiffness in subjects with prediabetes or non-diabetic metabolic syndrome. Eur J Endocrinol 154(3):433–440

    Article  PubMed  CAS  Google Scholar 

  127. Shadid S, Stehouwer CD, Jensen MD (2006) Diet/exercise versus pioglitazone: effects of insulin sensitization with decreasing or increasing fat mass on adipokines and inflammatory markers. J Clin Endocrinol Metab 91(9):3418–3425

    Article  PubMed  CAS  Google Scholar 

  128. Lipscombe LL, Gomes T, Levesque LE, Hux JE, Juurlink DN, Alter DA (2007) Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA 298(22):2634–2643

    Article  PubMed  CAS  Google Scholar 

  129. Singh S, Loke YK, Furberg CD (2007) Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 298(10):1189–1195

    Article  PubMed  CAS  Google Scholar 

  130. Kaul S, Bolger AF, Herrington D, Giugliano RP, Eckel RH (2010) Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College of Cardiology Foundation. Circulation 121(16):1868–1877

    Article  PubMed  Google Scholar 

  131. Utzschneider KM, Kahn SE (2006) Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 91(12):4753–4761

    Article  PubMed  CAS  Google Scholar 

  132. Hamaguchi MKT, Takeda N, Nakagawa T, Taniguchi H, Fujii K et al (2005) The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 143(10):722–728

    PubMed  CAS  Google Scholar 

  133. Ratziu V, Giral P, Jacqueminet S, Charlotte F, Hartemann-Heurtier A, Serfaty L et al (2008) Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 135(1):100–110

    Article  PubMed  CAS  Google Scholar 

  134. Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW et al (2002) The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51(3):797–802

    Article  PubMed  CAS  Google Scholar 

  135. Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J et al (2006) A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355(22):2297–2307

    Article  PubMed  CAS  Google Scholar 

  136. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM et al (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362(18): 1675–1685

    Article  PubMed  CAS  Google Scholar 

  137. Lutchman G, Modi A, Kleiner DE, Promrat K, Heller T, Ghany M et al (2007) The effects of discontinuing pioglitazone in patients with nonalcoholic steatohepatitis. Hepatology 46(2): 424–429

    Article  PubMed  CAS  Google Scholar 

  138. Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, Oliver D, Bacon BR (2003) Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology 38(4):1008–1017

    PubMed  CAS  Google Scholar 

  139. Guidance for Industry: Diabetes Mellitus—Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes. 2008 [cited 2012 September 12 2012]; Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071627.pdf

  140. Ryder RE (2011) Pioglitazone: an agent which reduces stroke, myocardial infarction and death and is also a key component of the modern paradigm for the optimum management of type 2 diabetes. Br J Diabetes Vasc Dis 11(3):113–120

    Article  CAS  Google Scholar 

  141. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298(10):1180–1188

    Article  PubMed  CAS  Google Scholar 

  142. Berlie HD, Kalus JS, Jaber LA (2007) Thiazolidinediones and the risk of edema: a meta-analysis. Diabetes Res Clin Pract 76(2):279–289

    Article  PubMed  CAS  Google Scholar 

  143. Karalliedde J, Buckingham R, Starkie M, Lorand D, Stewart M, Viberti G et al (2006) Effect of various diuretic treatments on rosiglitazone-induced fluid retention. J Am Soc Nephrol 17(12):3482–3490

    Article  PubMed  CAS  Google Scholar 

  144. Panchapakesan U, Pollock C, Saad S (2009) Review article: importance of the kidney proximal tubular cells in thiazolidinedione-mediated sodium and water uptake. Nephrology 14(3):298–301

    Article  PubMed  CAS  Google Scholar 

  145. Yang T, Soodvilai S (2008) Renal and vascular mechanisms of thiazolidinedione-induced fluid retention. PPAR Res 2008:943614

    PubMed  Google Scholar 

  146. Wainstein J, Katz L, Engel SS, Xu L, Golm GT, Hussain S et al (2012) Initial therapy with the fixed-dose combination of sitagliptin and metformin results in greater improvement in glycaemic control compared with pioglitazone monotherapy in patients with type 2 diabetes. Diabetes Obes Metab 14(5):409–418

    Article  PubMed  CAS  Google Scholar 

  147. Lago RM, Singh PP, Nesto RW (2007) Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 370(9593):1129–1136

    Article  PubMed  CAS  Google Scholar 

  148. Masoudi FA, Inzucchi SE, Wang Y, Havranek EP, Foody JM, Krumholz HM (2005) Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation 111(5):583–590

    Article  PubMed  CAS  Google Scholar 

  149. Lebovitz HE (2002) Differentiating members of the thiazolidinedione class: a focus on safety. Diabetes Metab Res Rev 18(Suppl 2):S23–S29

    Article  PubMed  CAS  Google Scholar 

  150. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA (2007) Thiazolidinediones improve beta-cell function in type 2 diabetic patients. Am J Physiol Endocrinol Metab 292(3):E871–E883

    Article  PubMed  CAS  Google Scholar 

  151. Kissileff HR, Thornton JC, Torres MI, Pavlovich K, Mayer LS, Kalari V et al (2012) Leptin reverses declines in satiation in weight-reduced obese humans. Am J Clin Nutr 95(2): 309–317

    Article  PubMed  CAS  Google Scholar 

  152. Ryan KK, Li B, Grayson BE, Matter EK, Woods SC, Seeley RJ (2011) A role for central nervous system PPAR-gamma in the regulation of energy balance. Nat Med 17(5):623–626

    Article  PubMed  CAS  Google Scholar 

  153. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR et al (2008) Rosiglitazone-associated fractures in type 2 diabetes: an analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 31(5):845–851

    Article  PubMed  CAS  Google Scholar 

  154. Takeda Pharmaceuticals Company (2007) Observation of an increased incidence of fractures in female patients who received long-term treatment with ACTOS (pioglitazone HCl) tablets for type 2 diabetes mellitus. 2007 [cited 2012 September 11 212]; Available from: http://www.fda.gov/downloads/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/UCM153896.pdf

  155. Loke YKSS, Furberg CD (2009) Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 180(1):32–39

    PubMed  Google Scholar 

  156. Meier CKM, Bodmer M, Jick SS, Jick H, Meier CR (2008) Use of thiazolidinediones and fracture risk. Arch Intern Med 168(8):820–825

    Article  PubMed  CAS  Google Scholar 

  157. Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146(3):1226–1235

    Article  PubMed  CAS  Google Scholar 

  158. Lecka-Czernik B, Ackert-Bicknell C, Adamo ML, Marmolejos V, Churchill GA, Shockley KR et al (2007) Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology 148(2):903–911

    Article  PubMed  CAS  Google Scholar 

  159. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J et al (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92(4):1305–1310

    Article  PubMed  CAS  Google Scholar 

  160. Yaturu S, Bryant B, Jain SK (2007) Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30(6):1574–1576

    Article  PubMed  CAS  Google Scholar 

  161. Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG et al (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95(1):134–142

    Article  PubMed  CAS  Google Scholar 

  162. Lewis JD, Ferrara A, Peng T, Hedderson M, Bilker WB, Quesenberry CP Jr et al (2011) Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care 34(4):916–922

    Article  PubMed  CAS  Google Scholar 

  163. Neumann A, Weill A, Ricordeau P, Fagot JP, Alla F, Allemand H (2012) Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study. Diabetologia 55(7):1953–1962

    Article  PubMed  CAS  Google Scholar 

  164. Azoulay L, Yin H, Filion KB, Assayag J, Majdan A, Pollak MN, Suissa S (2012) The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case–control study. BMJ 344:e3645

    Article  PubMed  Google Scholar 

  165. Yoshimura R, Matsuyama M, Segawa Y, Hase T, Mitsuhashi M, Tsuchida K et al (2003) Expression of peroxisome proliferator-activated receptors (PPARs) in human urinary bladder carcinoma and growth inhibition by its agonists. Int J Cancer 104(5):597–602

    Article  PubMed  CAS  Google Scholar 

  166. Cohen SM (2005) Effects of PPARgamma and combined agonists on the urinary tract of rats and other species. Toxicol Sci 87(2):322–327

    Article  PubMed  CAS  Google Scholar 

  167. Dominick MA, White MR, Sanderson TP, Van Vleet T, Cohen SM, Arnold LE et al (2006) Urothelial carcinogenesis in the urinary bladder of male rats treated with muraglitazar, a PPAR alpha/gamma agonist: evidence for urolithiasis as the inciting event in the mode of action. Toxicol Pathol 34(7):903–920

    Article  PubMed  CAS  Google Scholar 

  168. Ryder RE (2011) Pioglitazone and bladder cancer. Lancet 378(9802):1544

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The writing of this chapter was supported in part by the United States Department of Veterans Affairs and NIH grant T32 DK007247.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Kahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Suvag, S., Utzschneider, K.M., Kahn, S.E. (2013). Treatment with Thiazolidinediones. In: Beck-Nielsen, H. (eds) The Metabolic Syndrome. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1331-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1331-8_9

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1330-1

  • Online ISBN: 978-3-7091-1331-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics