Skip to main content

Resorcylic Acid Lactones

  • Chapter
  • First Online:
The Chemistry of Mycotoxins

Abstract

The resorcylic acid lactones (RALs) are a family of benzannulated macrolides, which are produced by a variety of fungi and show versatile biological activities (6). According to their name, they consist structurally of a partially substituted β-resorcylic acid scaffold, which is linked to a 12- or 14-membered macrolactone moiety. Selected members of this group are shown in Fig. 9.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Winssinger N, Barluenga S (2007) Chemistry and biology of resorcylic acid lactones. Chem Commun 22

    Google Scholar 

  2. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497

    Article  CAS  Google Scholar 

  3. Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109:3903

    Article  Google Scholar 

  4. Mirrington RN, Ritchie E, Shoppee CW, Taylor WC, Aternhell S (1964) The constitution of radicicol. Tetrahedron Lett 7:365

    Article  Google Scholar 

  5. McCapra F, Scott AI, Delmotte P, Delmotte-Plaquee J, Bhacca NS (1964) The constitution of monorden, an antibiotic with tranquilising action. Tetrahedron Lett 15:869

    Article  Google Scholar 

  6. Delmotte P, Delmotte-Plaquee J (1953) A new antifungal substance of fungal origin. Nature 171:344

    Article  CAS  Google Scholar 

  7. Stob M, Baldwin RS, Tuite J, Andrews FN, Gilette KG (1962) Isolation of an anabolic, uterotropic compound from corn infected with Gibberella zeae. Nature 196:1318

    Article  CAS  Google Scholar 

  8. Urry WH, Wehrmeister HL, Hodge EB, Hidy PH (1966) The structure of zearalenone. Tetrahedron Lett 27:3109

    Article  Google Scholar 

  9. http://www.agrigold.com/media/Rotten_Grain_In_The_Corn5.jpgbyAndrewWesthoven,RegionalAgronomist,AgriGoldHybrids,2009

  10. Hagler WM, Mirocha CJ, Pathre SV, Behrens JC (1979) Identification of the naturally occurring isomer of zearalenol produced by Fusarium roseum ‘Gibboseum’ in rice culture. Appl Environ Microbiol 37:849

    CAS  Google Scholar 

  11. Agatsuma T, Takahashi A, Kabuto C, Nozoe S (1993) Revised structure and chemistry of hypothemycin. Chem Pharm Bull 41:373

    Article  CAS  Google Scholar 

  12. Nair MSR, Carey ST (1980) Metabolites of pyrenomycetes XӀӀӀ: structure of (+) hypothemycin, an antibiotic macrolide from Hypomyces trichothecoides. Tetrahedron Lett 21:2011

    Article  CAS  Google Scholar 

  13. Isaka M, Suyarnsestakorn C, Tanticharoen M, Kongsaeree P, Thebtaranonth Y (2002) Aigialomycins a-E, new resorcylic macrolodes from the marine mangrove fungus Aigialus parvus. J Org Chem 67:1561

    Article  CAS  Google Scholar 

  14. Hellwig V, Mayer-Bartschmid A, Müller H, Greif G, Kleymann G, Zitzmann W, Tichy H-V, Stadler M (2003) Pochonins a-F, new antiviral and antiparasitic resorcylic acid lactones from Pochonia chlamydosporia var. Catenulata. J Nat Prod 66:829

    Article  CAS  Google Scholar 

  15. Xu L, He Z, Xue J, Chen X, Wei X (2010) β-resorcylic acid lactones from a Paecilomyces fungus. Nat Prod 73:885

    Article  CAS  Google Scholar 

  16. Shao C-L, Wu H-X, Wang Ch-Y, Liu Q-A, Xu Y, Wei M-Y, Qian P-Y, Gu Y-C, Zheng C-J, She Z-G, Lin Y-C (2011) Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J Nat Prod 74:629

    Article  CAS  Google Scholar 

  17. Oyama H, Sassa T, Ikeda M (1978) Structured of new plant growth inhibitors, trans- and cis-resorcylide. Agric Biol Chem 42:2407

    Article  CAS  Google Scholar 

  18. Aldridge DC, Galt S, Giles D, Turner WB (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc 1623

    Google Scholar 

  19. Miksicek RJ (1994) Interaction of naturally occuring nonsteroidal estrogens with expressed recombinant human estrogen receptor. J Steroid Biochem Mol Biol 49:153

    Article  CAS  Google Scholar 

  20. Shier WT, Shier AC, Xie W, Mirocha CJ (2001) Stucture-activity relationship for human estrogenic activity in zearalenone mycotoxins. Toxicon 39:1435

    Article  CAS  Google Scholar 

  21. Hodge EG, Hidy PH Wehrmeister HJ (1966) Estrogenic compounds and animal growth promotors. US Patent 3239345

    Google Scholar 

  22. Utian WH (1973) Comparative trial of P1496, a new non-steroidal oestrogen analogue. Br Med J 1:579

    Article  CAS  Google Scholar 

  23. Kwon HJ, Yoshida M, Fukui Y, Horinouchi S, Beppu T (1992) Potent and specific inhibition of p60v-src protein kinase both in vivo and in vitro by radicicol. Cancer Res 52:6926

    CAS  Google Scholar 

  24. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407

    Article  CAS  Google Scholar 

  25. Barluenga S, Dakas P, Boulifa M, Moulin E, Winssinger N (2008) Resorcylic acid lactones: a pluripotent scaffold with therapeutic potential. C R Chim 11:1306

    Article  CAS  Google Scholar 

  26. Schirmer A, Kennedy J, Sumati M, Reid R, Santi AV (2006) Target covalent inactivation of protein kinases by resorcylic acid lactone polyketides. Proc Natl Acad Sci USA 103:4234

    Article  CAS  Google Scholar 

  27. Zhao A, Lee SH, Jenkins RG, Patrick DR, Huber HE, Goetz MA, Hensens OD, Zink DL, Vilella D, Dombrowski AW, Lingham RB, Huang L (1999) Resorcylic acid lactones: naturally occurring potent and selective inhibitors of MEK. J Antibiot 52:1086

    Article  CAS  Google Scholar 

  28. Masamune S, Bates GS, Corcoran JW (1977) Macrolides. Recent progress in chemistry and biochemistry. Angew Chem Int Ed Engl 16:585

    Article  CAS  Google Scholar 

  29. Corey EJ, Nicolaou KC (1974) An efficient and mild lactonization method for the synthesis of macrolides. J Am Chem Soc 96:5614

    Article  CAS  Google Scholar 

  30. Masamune S, Kamata S, Schilling W (1975) Syntheses of macrolide antibiotics. ӀӀӀ. Direct ester and lactone synthesis from S-tert-butyl tioate (thiol ester). J Am Chem Soc 97:3515

    Article  CAS  Google Scholar 

  31. Fürstner A, Thiel OR, Kindler N, Bartkowska B (2000) Total syntheses of (S)-(‒)-zearalenone and lasiodiplodin reveal superior metathesis activity of ruthenium carbene complexes with imidazol-2-ylidene ligands. J Org Chem 65:7990

    Article  Google Scholar 

  32. Srihari P, Mahankali B, Rajendraprasad K (2012) Stereoselective total synthesis of paecilomycin E. Tertrahedron Lett 53:56

    Article  CAS  Google Scholar 

  33. Taub D, Girotra NN, Hoffsommer RD, Kuo CH, Slates HL, Weber S, Wendler NL (1967) Total synthesis of the macrolide, zearalenone. Chem Commun 225

    Google Scholar 

  34. Vlattas I, Harrison IT, Tökés L, Fried JH, Cross AD (1978) The synthesis of dl-zearalenone. J Org Chem 33:11

    Google Scholar 

  35. Takahashi T, Kasuga K, Takahashi M, Tsuji J (1979) A simple total synthesis of (±)-zearalenone by intramolecular alkylation using a butadiene telomer as building block. J Am Chem Soc 101:5072

    Article  CAS  Google Scholar 

  36. Keinan E, Sinha SC, Sinha-Bagchi A (1991) Thermostable enzymes in organic synthesis, Part 6. Total synthesis of (S)-(‒)-zearalenone using a TBADH-generated trifunctional chiron. J Chem Soc Perkin Trans 1:3333

    Article  Google Scholar 

  37. Hurd RN, Shah DH (1973) Total synthesis of the macrolide (R, S)-zearalenone. J Med Chem 16:543

    Article  CAS  Google Scholar 

  38. Takahashi T, Ikeda H, Tsuji J (1981) New synthetic method for orsellic acid type macrolides by intramolecular alkylation of protected cyanohydrin. The synthesis of (±)-zearalenone. Tetrahedron Lett 22:1363

    Article  CAS  Google Scholar 

  39. Hitchcock SA, Pattenden G (1990) Synthesis of macrocycles via allylic radical intermediates. A total synthesis of (±)-zearalenone. Tetrahedon Lett 31:3641

    Article  CAS  Google Scholar 

  40. Kalivretenos K, Stille JK, Hegedus LS (1991) Synthesis of β-resorcylic macrolides via organopalladium chemistry. Application to the total synthesis of (S)-zearalenone. J Org Chem 56:2883

    Article  CAS  Google Scholar 

  41. Nicolaou KC, Winssinger N, Pastor J, Murphy F (1998) Solid-phase synthesis of macrocyclic systems by a cyclorelease strategy: application of the stille coupling to a synthesis of (S)-zearalenone. Angew Chem Int Ed 37:2534

    Article  CAS  Google Scholar 

  42. Navarro I, Basset J-F, Hebbe S, Major SM, Werner T, Howsham C, Bräckow J, Barrett AGM (2008) Biomimetic synthesis of resorcylic natural products utilizing large stage aromatizitaion: concise total syntheses of the marine antifungal agents 15G253ι and 15G256β. J Am Chem Soc 130:10293

    Article  CAS  Google Scholar 

  43. Yadav JS, Murphy AV (2011) A concise synthesis of (S)-zearalenone and zeranol. Synthesis 13:2117

    Article  Google Scholar 

  44. Hodge EB (1974) Reduction of zearalenone. DE Patent 2328605

    Google Scholar 

  45. Ley SV, Burckhardt S (2000) The use of π-allyltricarbonyliron lactone complexes in the synthesis of the resorcylic macrolides α- and β-zearalenol. J Chem Soc Perkin Trans 1:3028

    Article  Google Scholar 

  46. Lampilas M, Lett R (1992) Convergent stereospecific total synthesis of monochiral monocillin I related macrolides. Tetrahedron Lett 33:773

    Article  CAS  Google Scholar 

  47. Lampilas M, Lett R (1992) Convergent stereospecific total synthesis of monocillin I and monorden (or radicicol). Tetrahedron Lett 33:777

    Article  CAS  Google Scholar 

  48. Tinchkowski I, Lett R (2002) Convergent stereospecific total synthesis of monocillin I and radicicol: some simplifications and improvements. Tetrahedron Lett 43:3997

    Article  Google Scholar 

  49. Tinchkowski I, Lett R (2002) Improvements of the total synthesis of monocillin I and radicicol via Miyaura-Suzuki couplings. Tetrahedron Lett 43:4003

    Article  Google Scholar 

  50. Garbaccio RM, Stachel SJ, Baeschlin DK, Danishefsky SJ (2001) Concise asymmetric syntheses of radicicol and monocillin Ӏ. J Am Chem Soc 123:10903

    Article  CAS  Google Scholar 

  51. Sellès P, Lett R (2002) Convergent stereospecific synthesis of C292 (or LL-Z1640-2) and hypothemycin. Part 1. Tetrahedron Lett 43:4621

    Article  Google Scholar 

  52. Sellès P, Lett R (2002) Convergent stereospecific synthesis of LL-Z1640-2 (or C292), hypothemycin and related macroliodes. Part 2. Tetrahedron Lett 43:4627

    Article  Google Scholar 

  53. Dakas PY, Jogireddy R, Valot G, Barluenga S, Winssinger N (2009) Divergent syntheses of resorcylic acid lactones: L-783277, LL-Z1640-2, and hypothemycin. Chem Eur J 15:1149

    Google Scholar 

  54. Geng X, Danishefsky SJ (2004) Total synthesis of aigialomycin D. Org Lett 6:413

    Article  CAS  Google Scholar 

  55. Barluenga S, Dakas PY, Ferandin Y, Meijer L, Winssinger N (2006) Modular asymmetric synthesis of aigialomycin D, a kinase-inhibitory scaffold. Angew Chem Int Ed 45:3951

    Article  CAS  Google Scholar 

  56. Lu J, Ma J, Xie X, Chen B, She X, Pan X (2006) Enantioselective total synthesis of aigialomycin D. Tetrahedron: Asymm 17:1066

    Article  CAS  Google Scholar 

  57. Baird LJ, Timmer MSM, Teesdale-Spittle PH, Harvey JE (2009) Total synthesis of aigialomycin D using a ramberg-bäcklund/RCM strategy. J Org Chem 74:2271

    Article  CAS  Google Scholar 

  58. Barluenga S, Lopez P, Moulin E, Winssinger N (2004) Modular asymmetric synthesis of pochonin C. Angew Chem Int Ed 43:3467

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bräse .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Bräse, S. et al. (2013). Resorcylic Acid Lactones. In: The Chemistry of Mycotoxins. Progress in the Chemistry of Organic Natural Products, vol 97. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1312-7_9

Download citation

Publish with us

Policies and ethics