Skip to main content

Peptidic Mycotoxins

  • Chapter
  • First Online:
The Chemistry of Mycotoxins

Abstract

Peptides are omnipresent in all living organisms. In particular, fungi produce a large number of mycotoxins containing peptide moieties. (Thio-)diketopiperazines (cyclodipeptides) represent a great family of peptidic mycotoxins, which were comprehensively illustrated in the corresponding chapter. Apart from diketopiperazines, there also exist other structural motifs containing one or more amino acid residues. These motifs can be both linear and cyclic. Depsipeptides, e.g. destruxins (Fig. 15.1.) (758) and enniatins (759), are mostly cyclic peptide structures which, apart from amide bonds, also contain ester bonds by incorporation of α-hydroxy acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109:3903

    Article  Google Scholar 

  2. Pedras MSC, Zaharia LI, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579, and references cited therein

    Article  CAS  Google Scholar 

  3. Ivanova L, Skjerve E, Eriksen GS, Uhlig S (2006) Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. Toxicon 47:868, and references cited therein

    Article  CAS  Google Scholar 

  4. Kodaira Y (1961) Toxic substances to insects, produced by Aspergillus ochraceus and Oospora destructor. Agric Biol Chem 25:261

    CAS  Google Scholar 

  5. Yoshida M, Takeuchi H, Ishida Y, Yashiroda Y, Yoshida M, Takagi M, Shin-ya K, Doi T (2010) Synthesis, structure determination, and biological evaluation of destruxin E. Org Lett 12:3792

    Article  CAS  Google Scholar 

  6. Gäumann E, Roth S, Etlinger L, Plattner PA, Nager U (1947) Enniatin, ein neues gegen Mykobakterien wirksames Antibiotikum. Cell Mol Life Sci 3:202

    Article  Google Scholar 

  7. Gäumann E, Naef-Roth S, Kern H (1960) Zur phytotoxischen Wirkung der Enniatine. Phytopath Z 40:45

    Article  Google Scholar 

  8. Tomoda H, Huang XH, Cao J, Nishida H, Nagao R, Okuda S, Tanaka H, Omura S, Arai H, Inoue K (1992) Inhibition of acyl-CoA: cholesterol acyltransferase activity by cyclodepsipeptide antibiotics. J Antibiot 45:1626

    Article  CAS  Google Scholar 

  9. Benz R (1978) Alkali Ion transport through lipid bilayer membranes mediated by enniatin A and B and beauvericin. J Membr Biol 43:367

    Article  CAS  Google Scholar 

  10. Ivanov VT, Estratov AV, Sumskaya LV, Melnik EI, Chumburidze TS, Portinova SL, Balashova TA, Ovchinnikov YA (1973) Sandwich complexes as a functional form of the enniatin ionophores. FEBS Lett 36:65

    Article  CAS  Google Scholar 

  11. Logrieco A, Moretti A, Castella G, Kostecki M, Golinski P, Ritieni A, Chelkowski J (1998) Beauvericin production by Fusarium species. Appl Environ Microbiol 64:3084

    CAS  Google Scholar 

  12. Benz F, Knüsel F, Nüesch J, Treichler H, Voser W, Nyfeler R, Keller-Schierlien W (1974) Stoffwechselprodukte von Mikroorganismen. 143. Mitteilung Echinocandin B, ein neuartiges Polypeptid-Antibioticum aus Aspergillus nidulans var echinulatus: Isolierung und Bausteine. Helv Chim Acta 57:2459

    Article  CAS  Google Scholar 

  13. Traber R, Keller-Juslen C, Loosli HR, Kuhn M, von Wartburg A (1979) Cyclopeptid-Antibiotika aus Aspergillus-Arten. Struktur der Echinocandine C und D. Helv Chim Acta 62:1252

    Article  CAS  Google Scholar 

  14. Morris MI, Villmann M (2006) Echinocandins in the management of invasive fungal infections, part 1. Am J Health Syst Pharm 63:1693

    Article  CAS  Google Scholar 

  15. Morris MI, Villmann M (2006) Echinocandins in the management of invasive fungal infections, part 2. Am J Health Syst Pharm 63:1813

    Article  CAS  Google Scholar 

  16. Pemberton CL, Salmond GPC (2004) The Nep1-like proteins – a growing family of microbial elicitors of plant necrosis. Mol Plant Pathol 5:353

    Article  CAS  Google Scholar 

  17. Bailey BA (1995) Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85:1250

    Article  CAS  Google Scholar 

  18. Bailey BA, Apel-Birkhold PC, Akingbe OO, Ryan JL, O’Neill NR, Anderson JD (2000) Nep1 protein from Fusarium oxysporum enhances biological control of opium poppy by Pleospora papaveracea. Phytopathology 90:812

    Article  CAS  Google Scholar 

  19. Le Quesne PW, Moussa M, Forsyth DA (1994) Structural and synthetic studies of pithomycolide. Pure Appl Chem 66:2249

    Article  Google Scholar 

  20. Moussa MM, Le Quesne PW (1996) Total synthesis of the cyclodepsipeptide ionophore pithomycolide. Tetrahedron Lett 37:6479

    Article  CAS  Google Scholar 

  21. Ludueña RF, Roach MC, Prasad V, Banerjee M, Koiso Y, Li Y, Iwasaki S (1994) Interaction of ustiloxin a with bovine brain tubulin. Biochem Pharmacol 47:1593

    Article  Google Scholar 

  22. Li Y, Koiso Y, Kobayashi H, Hashimoto Y, Iwasaki S (1995) Ustiloxins, new antimitotic cyclic peptides: interaction with porcine brain tubulin. Biochem Pharmacol 49:1367

    Article  CAS  Google Scholar 

  23. Cao B, Park H, Joullié MM (2002) Total synthesis of ustiloxin D. J Am Chem Soc 124:520

    Article  CAS  Google Scholar 

  24. Tanaka H, Sawayama AM, Wandless TJ (2003) Enantioselective total synthesis of ustiloxin D. J Am Chem Soc 125:6864

    Article  CAS  Google Scholar 

  25. Sawayama AM, Tanaka H, Wandless TJ (2004) Total synthesis of ustiloxin D and considerations on the origin of selectivity of the asymmetric allylic alkylation. J Org Chem 69:8810

    Article  CAS  Google Scholar 

  26. Li P, Evans CD, Joullié MM (2005) A convergent total synthesis of ustiloxin D via an unprecedented copper-catalyzed ethynyl aziridine ring-opening by phenol derivatives. Org Lett 7:5325

    Article  CAS  Google Scholar 

  27. Li P, Evans CD, Forbeck EM, Park H, Bai R, Hamel E, Joullié MM (2006) Total synthesis and biological evaluation of ustiloxin natural products and two analogs. Bioorg Med Chem Lett 16:4804

    Article  CAS  Google Scholar 

  28. Hagimori K, Fukuda T, Hasegawa Y, Omura S, Tomoda H (2007) Fungal malformins inhibit bleomycin-induced G2 checkpoint in Jurkat cells. Biol Pharm Bull 30:1379

    Article  CAS  Google Scholar 

  29. Kojima Y, Sunazuka T, Nagai K, Julfakyan K, Fukuda T, Tomoda H, Omura S (2008) Total synthesis of malformin C, an inhibitor of bleomycin-induced G2 arrest. J Antibiot 61:297

    Article  CAS  Google Scholar 

  30. Hunter L, Chung JH (2011) Total synthesis of unguisin A. J Am Chem Soc 76:5502

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bräse .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Bräse, S. et al. (2013). Peptidic Mycotoxins. In: The Chemistry of Mycotoxins. Progress in the Chemistry of Organic Natural Products, vol 97. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1312-7_15

Download citation

Publish with us

Policies and ethics