Skip to main content

Photosynthetic Paulinella: Recapitulation of Primary Plastid Establishment

  • Chapter
  • First Online:
Endosymbiosis

Abstract

The origin of photosynthesis in eukaryotes stems from a single primary endosymbiosis between a heterotrophic protist cell and a cyanobacterium that occurred more than 1.5 billion years ago. This proto-algal population gave rise to three lineages of the Plantae (Rhodophyta, Viridiplantae, and Glaucophyta). Rhodoplasts and chloroplasts were later spread horizontally into other eukaryotic lineages through secondary endosymbiosis. Primary endosymbiosis is therefore a critical feature of eukaryotic evolution; however, it is difficult to study because of the long evolutionary time span that has passed since primary plastid origin. The filose amoeba Paulinella chromatophora is an exceptional species that contains two plastids, referred to as “chromatophores,” that originated from a Synechococcus-like cyanobacterium. Photosynthetic Paulinella provides an ideal model to gain insights into the origin of photoautotrophy because its sister species are all heterotrophs that prey on cyanobacteria. Here, we review the evolutionary process that led to this second instance of primary endosymbiosis based on recent studies that include biodiversity surveys and plastid and nuclear genome data. Draft genome data from heterotrophic Paulinella using the single-cell genomics approach demonstrate two cases of horizontal gene transfer (HGT) from cyanobacteria, demonstrating that prey items are potential sources of foreign DNA in these taxa. Genome data from photosynthetic Paulinella provide evidence of massive gene loss from the chromatophore genome, endosymbiotic gene transfer (EGT) to the host nucleus, and the potential establishment of a plastid protein import system that relies on the secretory pathway in the amoeba. We also present recent data regarding postendosymbiotic speciation in photosynthetic Paulinella and lineage specific differential gene loss and EGT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Bhattacharya D, Archibald JM (2006) Response to Theissen and Martin. Curr Biol 16:R1017–R1018

    Article  CAS  Google Scholar 

  • Bhattacharya D, Archibald JM, Weber AP, Reyes-Prieto A (2007) How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29:1239–1246

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Helmchen T, Melkonian M (1995) Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta. J Eukaryot Microbiol 42:65–69

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D, Price DC, Yoon HS, Yang EC, Poulton NJ, Andersen RA, Das SP (2012) Single cell genome analysis supports a link between phagotrophy and primary plastid endosymbiosis. Sci Rep 2:356

    Article  PubMed  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26:50–60

    Article  PubMed  Google Scholar 

  • Bodyl A, Mackiewicz P, Stiller JW (2007) The intracellular cyanobacteria of Paulinella chromatophora: endosymbionts or organelles? Trends Microbiol 15:295–296

    Article  PubMed  CAS  Google Scholar 

  • Bodyl A, Mackiewicz P, Stiller JW (2010) Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins. Plant Biol (Stuttg) 12:639–649

    CAS  Google Scholar 

  • Brown JM (1915) On the occurrence of Paulinella chromatophora in Britain. Naturalist 157–159

    Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2:e790

    Article  PubMed  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369

    Article  PubMed  Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the Eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  PubMed  CAS  Google Scholar 

  • Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:328–333

    Article  PubMed  CAS  Google Scholar 

  • Criscuolo A, Gribaldo S (2011) Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol Biol Evol 28:3019–3032

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. Reprinted. Gramercy, London

    Google Scholar 

  • Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386–15391

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889

    Article  Google Scholar 

  • Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361:193–208

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Bhattacharya D (2009) Revaluating the evolution of the Toc and Tic protein translocons. Trends Plant Sci 14:13–20

    Article  PubMed  CAS  Google Scholar 

  • Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol Biol Evol 24:1702–1713

    Article  PubMed  CAS  Google Scholar 

  • Hannah F, Rogerson A, Anderson OR (1996) A description of Paulinella indentata n. sp. (Filosea: Euglyphina) from subtidal coastal benthic sediments. J Eukaryot Microbiol 43:1–4

    Article  Google Scholar 

  • Heywood JL, Sieracki ME, Bellows W, Poulton NJ, Stepanauskas R (2011) Capturing diversity of marine heterotrophic protists: one cell at a time. ISME J 5:674–684

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Gogarten JP (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8:R99

    Article  PubMed  Google Scholar 

  • Johnson PW, Hargraves PE, Sieburth JM (1988) Ultrastructure and ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and its redescription as a testate rhizopod, Paulinella ovalis n. comb. (Filosea: Euglyphina). J Protozool 35:618–626

    Article  Google Scholar 

  • Kalanon M, McFadden GI (2008) The chloroplast protein translocation complexes of Chlamydomonas reinhardtii: a bioinformatic comparison of Toc and Tic components in plants, green algae and red algae. Genetics 179:95–112

    Article  PubMed  CAS  Google Scholar 

  • Kepner WA (1905) Paulinella chromatophora. Biol Bull 9:128–129

    Article  Google Scholar 

  • Kies L (1974) Elektronenmikroskopische untersuchungen an Paulinella chromatophora Lauterborn, einer thekamobe mit blau-grunen endosymbionten (Cyanellen). Protoplasma 80:69–89

    Article  PubMed  CAS  Google Scholar 

  • Kies L, Kremer BP (1979) Function of cyanelles in the thecamoeba Paulinella chromatophora. Naturwissenschaften 66:578

    Article  CAS  Google Scholar 

  • Lackey JB (1936) Some fresh water protozoa with blue chromatophores. Biol Bull 71:492–497

    Article  Google Scholar 

  • Lauterborn R (1895) Protozoenstudien II. Paulinella chromatophora nov. gen., nov. spec., ein beschalter Rhizopode des Sußwassers mit blaugrunen chromatophorenartigen Einschlussen. Z Wiss Zool 59:537–544

    Google Scholar 

  • Mackiewicz P, Bodyl A, Gagat P (2012) Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora. Theory Biosci 131:1–18

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CT

    Google Scholar 

  • Marin B, Nowack EC, Glockner G, Melkonian M (2007) The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium. BMC Evol Biol 7:85

    Article  PubMed  Google Scholar 

  • Marin B, Nowack EC, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (1999) Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol 2:513–519

    Article  PubMed  CAS  Google Scholar 

  • Melkonian M, Mollenhauer D (2005) Robert Lauterborn (1869–1952) and his Paulinella chromatophora. Protist 156:253–262

    Article  PubMed  Google Scholar 

  • Mendonca AG, Alves RJ, Pereira-Leal JB (2011) Loss of genetic redundancy in reductive genome evolution. PLoS Comput Biol 7:e1001082

    Article  PubMed  CAS  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biologisches Centralblatt 25:593–604

    Google Scholar 

  • Moustafa A, Reyes-Prieto A, Bhattacharya D (2008) Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS One 3:e2205

    Article  PubMed  Google Scholar 

  • Nakayama T, Ishida K (2009) Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol 19:R284–R285

    Article  PubMed  CAS  Google Scholar 

  • Nicholls K (2009) Six new marine species of the genus Paulinella (Rhizopoda: Filosea, or Rhizaria: Cercozoa). J Mar Biol Assoc UK 89:1415–1425

    Article  Google Scholar 

  • Nowack EC, Melkonian M, Glockner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418

    Article  PubMed  CAS  Google Scholar 

  • Nowack EC, Vogel H, Groth M, Grossman AR, Melkonian M, Glockner G (2010) Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol 28:407–422

    Article  PubMed  Google Scholar 

  • Nowack EC, Grossman AR (2012) Trafficking of protein into the recently established photosynthetic oreganelles of Paulinella chromatophora. Proc Natl Acad Sci USA 109:5340–5345

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, Watanabe M (2007) Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Mol Biol Evol 24:1592–1595

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39:4–12

    Article  CAS  Google Scholar 

  • Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA (2010) Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 59:518–533

    Article  PubMed  Google Scholar 

  • Pendard E (1905) Notes sur quelques sarcodines. Int Rev Suisse Zool 13:603–610

    Google Scholar 

  • Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber APM, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JAD, Lang BF, Burger G, Steiner JM, Löffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847

    Article  PubMed  CAS  Google Scholar 

  • Qiu H, Yang EC, Bhattacharya D, Yoon HS (2012) Ancient gene paralogy may mislead inference of plastid phylogeny. Mol Biol Evol 29:3333–3343

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007a) Phylogeny of Calvin cycle enzymes supports Plantae monophyly. Mol Phylogenet Evol 45:384–391

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007b) Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae. Mol Biol Evol 24:2358–2361

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D (2006) Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol 16:2320–2325

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto A, Yoon HS, Moustafa A, Yang EC, Andersen RA, Boo SM, Nakayama T, Ishida K, Bhattacharya D (2010) Differential gene retention in plastids of common recent origin. Mol Biol Evol 27:1530–1537

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF (2007) Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol 17:1420–1425

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Philippe H (2006) Plastid origin: replaying the tape. Curr Biol 16:R53–R56

    Article  PubMed  CAS  Google Scholar 

  • Stepanauskas R, Sieracki ME (2007) Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci USA 104:9052–9057

    Article  PubMed  CAS  Google Scholar 

  • Steiner JM, Yusa F, Pompe JA, Löffelhardt W (2005) Homologous protein import machineries in chloroplasts and cyanelles. Plant J 44:646–652

    Article  PubMed  CAS  Google Scholar 

  • Stiller JW (2007) Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci 12:391–396

    Article  PubMed  CAS  Google Scholar 

  • Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (2000) Phylogenetic analyses indicate that the 19′Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718–729

    Article  PubMed  CAS  Google Scholar 

  • Theissen U, Martin W (2006) The difference between organelles and endosymbionts. Curr Biol 16:R1016–R1017

    Article  PubMed  CAS  Google Scholar 

  • Vørs N (1993) Marine heterotrophic amoebae, flagellates and Heliozoa from Belize (Central America) and Tenerife (Canary Islands), with descriptions of new species, Luffisphaera bulbochaete n. sp., L. Longihastis n. sp., L. turriformis n. sp. and Paulinella intermedia n. sp. J Eukaryot Microbiol 40:272–287

    Article  Google Scholar 

  • Weber AP, Linka M, Bhattacharya D (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5:609–612

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507–15512

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Van Dolah FM, Nosenko T, Lidie KL, Bhattacharya D (2005) Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. Mol Biol Evol 22:1299–1308

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Nakayama T, Reyes-Prieto A, Andersen RA, Boo SM, Ishida KI, Bhattacharya D (2009) A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Evol Biol 9:98

    Article  PubMed  Google Scholar 

  • Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D (2006) Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol 16:R670–R672

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan Su Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Yoon, H.S., Yang, E.C., Qiu, H., Bhattacharya, D. (2014). Photosynthetic Paulinella: Recapitulation of Primary Plastid Establishment. In: Löffelhardt, W. (eds) Endosymbiosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1303-5_8

Download citation

Publish with us

Policies and ethics