Skip to main content

Tumor–Stroma Interaction and Cancer Progression

  • Chapter
  • First Online:
Interaction of Immune and Cancer Cells

Abstract

The understanding of how normal cells transform into tumor cells and progress to invasive cancer and metastases continues to evolve. The tumor mass is comprised of a heterogeneous population of cells that include recruited host immune cells, stromal cells, matrix components, and endothelial cells. This tumor microenvironment plays a fundamental role in the acquisition of hallmark traits, and has been the intense focus of current research. A key regulatory mechanism triggered by these tumor–stroma interactions includes processes that resemble epithelial–mesenchymal transition, a physiologic program that allows a polarized epithelial cell to undergo biochemical and cellular changes and adopt mesenchymal cell characteristics. These cellular adaptations facilitate enhanced migratory capacity, invasiveness, elevated resistance to apoptosis, and greatly increased production of ECM components. Indeed, it has been postulated that cancer cells undergo epithelial–mesenchymal transition to invade and metastasize.

In the following discussion, the physiology of chronic inflammation, wound healing, fibrosis, and tumor invasion will be explored. The key regulatory cytokines transforming growth factor-β and osteopontin and their roles in cancer metastasis will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bFGF:

Basic fibroblast growth factor

BM:

Basement membrane

BSP:

Bone sialoprotein

CSC:

Cancer stem cell

CSF-1:

Colony-stimulating factor

DMP1:

Dentin matrix protein 1

DSPP:

Dentin sialoprotein

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Epithelial–mesenchymal transition

GAG:

Glycosaminoglycan

GMCSF:

Granulocyte–macrophage colony-stimulating factor

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

Hh:

Hedgehog

HSC:

Hepatic stellate cells

IFN:

Interferon

IL:

Interleukin

LEF:

Lymphoid enhancer factor

LLC:

Large latency complex

LOX:

Lysyl oxidase

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MDCK:

Madin–Derby canine kidney

MDSC:

Myeloid-derived suppressor cell

MEPE:

Matrix extracellular phoshoglycoprotein

MET:

Mesenchymal–epithelial transition

MHC:

Major histocompatibility complex

MIF:

Macrophage migration inhibitory factor

miR:

microRNA

MSC:

Mesenchymal stem cell

NK:

Natural killer

OPN:

Osteopontin

PDGF:

Platelet-derived growth factor

PMA:

Phorbol 12-myristate 13-acetate

SIBLING:

Small integrin-binding ligand N-linked glycoprotein

TAM:

Tumor-associated macrophages

TGF-β:

Transforming growth factor

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

UUO:

Unilateral ureteral obstruction

VEGF:

Vascular endothelial growth factor

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    PubMed  CAS  Google Scholar 

  3. Kalluri R, Neilson EG (2003) Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    PubMed  CAS  Google Scholar 

  4. Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119:1420–1428

    PubMed  CAS  Google Scholar 

  5. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    PubMed  Google Scholar 

  6. Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9:138–141

    PubMed  CAS  Google Scholar 

  7. Ota I, Li X-Y, Hu Y, Weiss SJ (2009) Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci USA 106:20318–20323

    PubMed  CAS  Google Scholar 

  8. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300

    PubMed  CAS  Google Scholar 

  9. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200

    PubMed  CAS  Google Scholar 

  10. Sanderson RD, Yang Y, Kelly T et al (2005) Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies. J Cell Biochem 96:897–905

    PubMed  CAS  Google Scholar 

  11. Timár J, Lapis K, Dudás J (2002) Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12:173–186

    PubMed  Google Scholar 

  12. Naor D, Nedvetzki S, Golan I et al (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39:527–579

    PubMed  CAS  Google Scholar 

  13. Csiszar K (2001) Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70:1–32

    PubMed  CAS  Google Scholar 

  14. Ng MR, Brugge JS (2009) A stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cell 16:455–457

    PubMed  CAS  Google Scholar 

  15. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    PubMed  CAS  Google Scholar 

  16. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    PubMed  CAS  Google Scholar 

  17. Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248

    PubMed  CAS  Google Scholar 

  18. Gruss CJ, Satyamoorthy K, Berking C et al (2003) Stroma formation and angiogenesis by overexpression of growth factors, cytokines, and proteolytic enzymes in human skin grafted to SCID mice. J Invest Dermatol 120:683–692

    PubMed  CAS  Google Scholar 

  19. Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264:169–184

    PubMed  CAS  Google Scholar 

  20. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    PubMed  CAS  Google Scholar 

  21. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    PubMed  CAS  Google Scholar 

  22. Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638

    PubMed  CAS  Google Scholar 

  23. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    PubMed  CAS  Google Scholar 

  24. Beckebaum S, Zhang X, Chen X et al (2004) Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 10:7260–7269

    PubMed  CAS  Google Scholar 

  25. Chau GY, Wu CW, Lui WY et al (2000) Serum interleukin-10 but not interleukin-6 is related to clinical outcome in patients with resectable hepatocellular carcinoma. Ann Surg 231:552–558

    PubMed  CAS  Google Scholar 

  26. Hattori E, Okumoto K, Adachi T et al (2003) Possible contribution of circulating interleukin-10 (IL-10) to anti-tumor immunity and prognosis in patients with unresectable hepatocellular carcinoma. Hepatol Res 27:309–314

    PubMed  Google Scholar 

  27. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    PubMed  CAS  Google Scholar 

  28. Buelens C, Willems F, Delvaux A et al (1995) Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. Eur J Immunol 25:2668–2672

    PubMed  CAS  Google Scholar 

  29. Buelens C, Verhasselt V, De Groote D et al (1997) Interleukin-10 prevents the generation of dendritic cells from human peripheral blood mononuclear cells cultured with interleukin-4 and granulocyte/macrophage-colony-stimulating factor. Eur J Immunol 27:756–762

    PubMed  CAS  Google Scholar 

  30. McBride JM, Jung T, de Vries JE, Aversa G (2002) IL-10 alters DC function via modulation of cell surface molecules resulting in impaired T-cell responses. Cell Immunol 215:162–172

    PubMed  CAS  Google Scholar 

  31. Allavena P, Piemonti L, Longoni D et al (1998) IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 28:359–369

    PubMed  CAS  Google Scholar 

  32. Mocellin S, Panelli MC, Wang E et al (2003) The dual role of IL-10. Trends Immunol 24:36–43

    PubMed  CAS  Google Scholar 

  33. Zheng LM, Ojcius DM, Garaud F et al (1996) Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J Exp Med 184:579–584

    PubMed  CAS  Google Scholar 

  34. Kundu N, Fulton AM (1997) Interleukin-10 inhibits tumor metastasis, downregulates MHC class I, and enhances NK lysis. Cell Immunol 180:55–61

    PubMed  CAS  Google Scholar 

  35. Groux H, Cottrez F, Rouleau M et al (1999) A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J Immunol 162:1723–1729

    PubMed  CAS  Google Scholar 

  36. Berman RM, Suzuki T, Tahara H et al (1996) Systemic administration of cellular IL-10 induces an effective, specific, and long-lived immune response against established tumors in mice. J Immunol 157:231–238

    PubMed  CAS  Google Scholar 

  37. Fujii S, Shimizu K, Shimizu T, Lotze MT (2001) Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ. Blood 98:2143–2151

    PubMed  CAS  Google Scholar 

  38. Wang XD, Wang L, Ji FJ et al (2012) Decreased CD27 on B lymphocytes in patients with primary hepatocellular carcinoma. J Int Med Res 40:307–316

    PubMed  CAS  Google Scholar 

  39. He X, Li X, Liu B et al (2011) Down-regulation of Treg cells and up-regulation of TH1/TH2 cytokine ratio were induced by polysaccharide from Radix Glycyrrhizae in H22 hepatocarcinoma bearing mice. Molecules 16:8343–8352

    PubMed  CAS  Google Scholar 

  40. Shiraki T, Takayama E, Magari H et al (2011) Altered cytokine levels and increased CD4+CD57+ T cells in the peripheral blood of hepatitis C virus-related hepatocellular carcinoma patients. Oncol Rep 26:201–208

    PubMed  CAS  Google Scholar 

  41. Kuang DM, Peng C, Zhao Q et al (2010) Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology 51:154–164

    PubMed  CAS  Google Scholar 

  42. Aris M, Barrio MM, Mordoh J (2012) Lessons from cancer immunoediting in cutaneous melanoma. Clin Dev Immunol 2012:192719

    PubMed  Google Scholar 

  43. Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    PubMed  CAS  Google Scholar 

  44. Schoppmann SF, Birner P, Stockl J et al (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161:947–956

    PubMed  CAS  Google Scholar 

  45. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    PubMed  CAS  Google Scholar 

  46. Hudson JD, Shoaibi MA, Maestro R et al (1999) A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 190:1375–1382

    PubMed  CAS  Google Scholar 

  47. De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    PubMed  Google Scholar 

  48. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    PubMed  CAS  Google Scholar 

  49. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645

    PubMed  CAS  Google Scholar 

  50. Huang B, Pan PY, Li Q et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    PubMed  CAS  Google Scholar 

  51. Sinha P, Clements VK, Bunt SK et al (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    PubMed  CAS  Google Scholar 

  52. Li H, Han Y, Guo Q et al (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182:240–249

    PubMed  CAS  Google Scholar 

  53. Hoechst B, Voigtlaender T, Ormandy L et al (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50:799–807

    PubMed  CAS  Google Scholar 

  54. Direkze NC, Hodivala-Dilke K, Jeffery R et al (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64:8492–8495

    PubMed  CAS  Google Scholar 

  55. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    PubMed  CAS  Google Scholar 

  56. Dvorak HF, Form DM, Manseau EJ, Smith BD (1984) Pathogenesis of desmoplasia. I. Immunofluorescence identification and localization of some structural proteins of line 1 and line 10 guinea pig tumors and of healing wounds. J Natl Cancer Inst 73:1195–1205

    PubMed  CAS  Google Scholar 

  57. Shao ZM, Nguyen M, Barsky SH (2000) Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 19:4337–4345

    PubMed  CAS  Google Scholar 

  58. Mani SA, Guo W, Liao MJ et al (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    PubMed  CAS  Google Scholar 

  59. Berdiel-Acer M, Bohem ME, Lopez-Doriga A et al (2011) Hepatic carcinoma-associated fibroblasts promote an adaptative response in colorectal cancer cells that inhibit proliferation and apoptosis: nonresistant cells die by nonapoptotic cell death. Neoplasia 13:931–946

    PubMed  CAS  Google Scholar 

  60. Alison MR, Choong C, Lim S (2007) Application of liver stem cells for cell therapy. Semin Cell Dev Biol 18:819–826

    PubMed  CAS  Google Scholar 

  61. Klymkowsky MW, Savagner P (2009) Epithelial–mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol 174:1588–1593

    PubMed  CAS  Google Scholar 

  62. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    PubMed  CAS  Google Scholar 

  63. Thiery JP (2009) Epithelial–mesenchymal transitions in cancer onset and progression. Bull Acad Natl Med 193:1969–1978, discussion 1978–1969

    PubMed  CAS  Google Scholar 

  64. Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161

    PubMed  CAS  Google Scholar 

  65. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    PubMed  CAS  Google Scholar 

  66. Niessen K, Fu Y, Chang L et al (2008) Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 182:315–325

    PubMed  CAS  Google Scholar 

  67. Medici D, Hay ED, Olsen BR (2008) Snail and Slug promote epithelial–mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell 19:4875–4887

    PubMed  CAS  Google Scholar 

  68. Kokudo T, Suzuki Y, Yoshimatsu Y et al (2008) Snail is required for TGFbeta-induced endothelial–mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci 121:3317–3324

    PubMed  CAS  Google Scholar 

  69. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial–mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    PubMed  Google Scholar 

  70. Taube JH, Herschkowitz JI, Komurov K et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 107:15449–15454

    PubMed  CAS  Google Scholar 

  71. Yang J, Weinberg RA (2008) Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    PubMed  CAS  Google Scholar 

  72. Peinado H, Marin F, Cubillo E et al (2004) Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 117:2827–2839

    PubMed  CAS  Google Scholar 

  73. Hlubek F, Brabletz T, Budczies J et al (2007) Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer 121:1941–1948

    PubMed  CAS  Google Scholar 

  74. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    PubMed  CAS  Google Scholar 

  75. Fidler IJ (2001) Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 10:257–269, vii–viiii

    Google Scholar 

  76. Brabletz T, Jung A, Reu S et al (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98:10356–10361

    PubMed  CAS  Google Scholar 

  77. Zeisberg M, Shah AA, Kalluri R (2005) Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem 280:8094–8100

    PubMed  CAS  Google Scholar 

  78. Talbot LJ, Bhattacharya SD, Kuo PC (2012) Epithelial–mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. Int J Biochem Mol Biol 3:117–136

    PubMed  CAS  Google Scholar 

  79. Koinuma D, Tsutsumi S, Kamimura N et al (2009) Promoter-wide analysis of Smad4 binding sites in human epithelial cells. Cancer Sci 100:2133–2142

    PubMed  CAS  Google Scholar 

  80. Meulmeester E, Ten Dijke P (2011) The dynamic roles of TGF-beta in cancer. J Pathol 223:205–218

    PubMed  CAS  Google Scholar 

  81. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    PubMed  CAS  Google Scholar 

  82. Oft M, Heider KH, Beug H (1998) TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8:1243–1252

    PubMed  CAS  Google Scholar 

  83. Hata A, Shi Y, Massague J (1998) TGF-beta signaling and cancer: structural and functional consequences of mutations in Smads. Mol Med Today 4:257–262

    PubMed  CAS  Google Scholar 

  84. Song J (2007) EMT or apoptosis: a decision for TGF-beta. Cell Res 17:289–290

    PubMed  CAS  Google Scholar 

  85. Postigo AA, Depp JL, Taylor JJ, Kroll KL (2003) Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J 22:2453–2462

    PubMed  CAS  Google Scholar 

  86. Tian M, Neil JR, Schiemann WP (2011) Transforming growth factor-beta and the hallmarks of cancer. Cell Signal 23:951–962

    PubMed  CAS  Google Scholar 

  87. Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127:2021–2036

    PubMed  CAS  Google Scholar 

  88. Wendt MK, Tian M, Schiemann WP (2012) Deconstructing the mechanisms and consequences of TGF-beta-induced EMT during cancer progression. Cell Tissue Res 347:85–101

    PubMed  CAS  Google Scholar 

  89. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    PubMed  CAS  Google Scholar 

  90. Leptin M (1991) Twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev 5:1568–1576

    PubMed  CAS  Google Scholar 

  91. D’Inzeo S, Nicolussi A, Donini CF et al (2012) A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression. Endocr Relat Cancer 19:39–55

    PubMed  Google Scholar 

  92. Biswas S, Guix M, Rinehart C et al (2007) Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 117:1305–1313

    PubMed  CAS  Google Scholar 

  93. Zhou YC, Liu JY, Li J et al (2011) Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial–mesenchymal transition. Int J Radiat Oncol Biol Phys 81:1530–1537

    PubMed  CAS  Google Scholar 

  94. Dooley S, ten Dijke P (2012) TGF-beta in progression of liver disease. Cell Tissue Res 347:245–256

    PubMed  CAS  Google Scholar 

  95. Kanzler S, Meyer E, Lohse AW et al (2001) Hepatocellular expression of a dominant-negative mutant TGF-beta type II receptor accelerates chemically induced hepatocarcinogenesis. Oncogene 20:5015–5024

    PubMed  CAS  Google Scholar 

  96. Dooley S, Hamzavi J, Ciuclan L et al (2008) Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 135:642–659

    PubMed  CAS  Google Scholar 

  97. Kaimori A, Potter J, Kaimori JY et al (2007) Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem 282:22089–22101

    PubMed  CAS  Google Scholar 

  98. Nitta T, Kim JS, Mohuczy D, Behrns KE (2008) Murine cirrhosis induces hepatocyte epithelial mesenchymal transition and alterations in survival signaling pathways. Hepatology 48:909–919

    PubMed  CAS  Google Scholar 

  99. Caja L, Bertran E, Campbell J et al (2011) The transforming growth factor-beta (TGF-beta) mediates acquisition of a mesenchymal stem cell-like phenotype in human liver cells. J Cell Physiol 226:1214–1223

    PubMed  CAS  Google Scholar 

  100. Franco DL, Mainez J, Vega S et al (2010) Snail1 suppresses TGF-beta-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J Cell Sci 123:3467–3477

    PubMed  CAS  Google Scholar 

  101. Yang L, Lin C, Liu ZR (2006) P68 RNA helicase mediates PDGF-induced epithelial–mesenchymal transition by displacing Axin from beta-catenin. Cell 127:139–155

    PubMed  CAS  Google Scholar 

  102. Eger A, Stockinger A, Schaffhauser B et al (2000) Epithelial–mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J Cell Biol 148:173–188

    PubMed  CAS  Google Scholar 

  103. Stockinger A, Eger A, Wolf J et al (2001) E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. J Cell Biol 154:1185–1196

    PubMed  CAS  Google Scholar 

  104. Bhowmick NA, Zent R, Ghiassi M et al (2001) Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 276:46707–46713

    PubMed  CAS  Google Scholar 

  105. Lee YH, Albig AR, Regner M et al (2008) Fibulin-5 initiates epithelial–mesenchymal transition (EMT) and enhances EMT induced by TGF-beta in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis 29:2243–2251

    PubMed  CAS  Google Scholar 

  106. Lehmann K, Janda E, Pierreux CE et al (2000) Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 14:2610–2622

    PubMed  CAS  Google Scholar 

  107. Gotzmann J, Huber H, Thallinger C et al (2002) Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-beta1 and Ha-Ras: steps towards invasiveness. J Cell Sci 115:1189–1202

    PubMed  CAS  Google Scholar 

  108. Oft M, Peli J, Rudaz C et al (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10:2462–2477

    PubMed  CAS  Google Scholar 

  109. Cui W, Fowlis DJ, Bryson S et al (1996) TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542

    PubMed  CAS  Google Scholar 

  110. Watanabe T, Wu TT, Catalano PJ et al (2001) Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344:1196–1206

    PubMed  CAS  Google Scholar 

  111. Tepass U, Truong K, Godt D et al (2000) Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 1:91–100

    PubMed  CAS  Google Scholar 

  112. Edelman GM, Gallin WJ, Delouvee A et al (1983) Early epochal maps of two different cell adhesion molecules. Proc Natl Acad Sci USA 80:4384–4388

    PubMed  CAS  Google Scholar 

  113. Gottardi CJ, Wong E, Gumbiner BM (2001) E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol 153:1049–1060

    PubMed  CAS  Google Scholar 

  114. Kim K, Lu Z, Hay ED (2002) Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26:463–476

    PubMed  CAS  Google Scholar 

  115. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914

    PubMed  CAS  Google Scholar 

  116. Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial–mesenchymal transition. Cell Cycle 7:3112–3118

    PubMed  CAS  Google Scholar 

  117. Ye QH, Qin LX, Forgues M et al (2003) Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9:416–423

    PubMed  CAS  Google Scholar 

  118. Mi Z, Bhattacharya SD, Kim VM et al (2011) Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis 32:477–487

    PubMed  CAS  Google Scholar 

  119. Bhattacharya SD, Mi Z, Kim VM et al (2012) Osteopontin regulates epithelial–mesenchymal transition-associated growth of hepatocellular cancer in a mouse xenograft model. Ann Surg 255:319–325

    PubMed  Google Scholar 

  120. Senger DR, Wirth DF, Hynes RO (1979) Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 16:885–893

    PubMed  CAS  Google Scholar 

  121. Wai PY, Kuo PC (2008) Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev 27:103–118

    PubMed  CAS  Google Scholar 

  122. Fisher LW, Fedarko NS (2003) Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44(Suppl 1):33–40

    PubMed  CAS  Google Scholar 

  123. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482

    PubMed  CAS  Google Scholar 

  124. Senger DR, Perruzzi CA, Gracey CF et al (1988) Secreted phosphoproteins associated with neoplastic transformation: close homology with plasma proteins cleaved during blood coagulation. Cancer Res 48:5770–5774

    PubMed  CAS  Google Scholar 

  125. Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48

    PubMed  CAS  Google Scholar 

  126. Bautista DS, Denstedt J, Chambers AF, Harris JF (1996) Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. J Cell Biochem 61:402–409

    PubMed  CAS  Google Scholar 

  127. Merszei J, Wu J, Torres L et al (2010) Osteopontin overproduction is associated with progression of glomerular fibrosis in a rat model of anti-glomerular basement membrane glomerulonephritis. Am J Nephrol 32:262–271

    PubMed  CAS  Google Scholar 

  128. Yoo KH, Thornhill BA, Forbes MS et al (2006) Osteopontin regulates renal apoptosis and interstitial fibrosis in neonatal chronic unilateral ureteral obstruction. Kidney Int 70:1735–1741

    PubMed  CAS  Google Scholar 

  129. Lenga Y, Koh A, Perera AS et al (2008) Osteopontin expression is required for myofibroblast differentiation. Circ Res 102:319–327

    PubMed  CAS  Google Scholar 

  130. Liaw L, Birk DE, Ballas CB et al (1998) Altered wound healing in mice lacking a functional osteopontin gene (spp1). J Clin Invest 101:1468–1478

    PubMed  CAS  Google Scholar 

  131. Mori R, Shaw TJ, Martin P (2008) Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med 205:43–51

    PubMed  CAS  Google Scholar 

  132. Miyazaki K, Okada Y, Yamanaka O et al (2008) Corneal wound healing in an osteopontin-deficient mouse. Invest Ophthalmol Vis Sci 49:1367–1375

    PubMed  Google Scholar 

  133. Medico E, Gentile A, Lo Celso C et al (2001) Osteopontin is an autocrine mediator of hepatocyte growth factor-induced invasive growth. Cancer Res 61:5861–5868

    PubMed  CAS  Google Scholar 

  134. Zhao J, Dong L, Lu B et al (2008) Down-regulation of osteopontin suppresses growth and metastasis of hepatocellular carcinoma via induction of apoptosis. Gastroenterology 135:956–968

    PubMed  CAS  Google Scholar 

  135. Sun BS, Dong QZ, Ye QH et al (2008) Lentiviral-mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma. Hepatology 48:1834–1842

    PubMed  CAS  Google Scholar 

  136. Saika S, Shirai K, Yamanaka O et al (2007) Loss of osteopontin perturbs the epithelial–mesenchymal transition in an injured mouse lens epithelium. Lab Invest 87:130–138

    PubMed  CAS  Google Scholar 

  137. Goparaju CM, Pass HI, Blasberg JD et al (2010) Functional heterogeneity of osteopontin isoforms in non-small cell lung cancer. J Thorac Oncol 5:1516–1523

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Kuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Li, N.Y., Kuo, P.C., Wai, P.Y. (2014). Tumor–Stroma Interaction and Cancer Progression. In: Klink, M. (eds) Interaction of Immune and Cancer Cells. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1300-4_2

Download citation

Publish with us

Policies and ethics