Skip to main content

Methods and Techniques to Measure Molecular Oxygen in Plants

  • Chapter
  • First Online:
Low-Oxygen Stress in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 21))

Abstract

Designing and developing sensors for molecular oxygen (O2) has turned into a large, interdisciplinary field of research, with significant progress seen in the past decades. Until the early 1980s, the field of O2 sensing was dominated by polarographic electrode sensors, among which the most popular Clark-type electrode found wide application in plant science. Nevertheless, the great demand for more sophisticated, intracellularly applicable O2 sensors for real-time measurements in plants cannot be satisfied by the predominant techniques. Thus, optical sensors applying an O2-specific reduction of luminescent probes or dyes provide novel, promising tools and open new perspectives on the cellular or even subcellular level of O2 measurements. This chapter aims to give a comprehensive overview on the variety of methods and systems available in the field of O2 sensing with respect to application in plant tissue. Different types of the earlier polarographic electrode technique as well as emerging alternatives will be discussed, including fluorescent proteins as potential, genetically encoded intracellular O2 sensors. Due to the tremendous variety of materials and formats, the young field of optical O2 sensing will receive particular attention directing the focus towards the progress that has been made in developing new probes and dyes. Moreover, the current state of fluorescence measurements will be explored, particularly novel, plant-specific measurement modalities that mask plant autofluorescence. For the potential user, important practical aspects are also presented, revealing the limitations of the existing methods and further encouraging more interdisciplinary research in O2 sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD:

Analog-to-digital

CPP:

Cell-penetrating peptides

FbFP:

Flavin-binding fluorescent protein

FLIM:

Fluorescence lifetime imaging

FluBO:

Fluorescent protein-based biosensor for O2

FP:

Fluorescent protein

FRET:

Förster resonance energy transfer

GFP:

Green fluorescent protein

O2 :

Molecular oxygen

TCSPC:

Time-correlated single photon counting

TPE:

Two-photon excitation

YFP:

Yellow fluorescent protein

References

  • Adamec L (2005) Ecophysiological characterization of carnivorous plant roots: oxygen fluxes, respiration, and water exudation. Biol Plant 49:247–255

    Article  Google Scholar 

  • Armstrong W (1964) Oxygen diffusion from the roots of some British bog plants. Nature 204:801–802

    Article  CAS  Google Scholar 

  • Armstrong W (1967) The use of polarography in the assay of oxygen diffusing from roots in anaerobic media. Physiol Plant 20:540–553

    Article  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. In: Woolhouse HWW (ed) Advances in botanical research, vol 7. Academic, London, pp 225–332

    Google Scholar 

  • Armstrong W (1994) Polarographic oxygen electrodes and their use in plant aeration studies. Proc R Soc Edinb 102B:511–521

    Google Scholar 

  • Armstrong W, Gaynard TJ (1976) The critical oxygen pressure for root respiration in intact plants. Physiol Plant 37:200–206

    Article  CAS  Google Scholar 

  • Armstrong W, Wright EJ (1975) The theoretical basis for the manipulation of flux data obtained by the cylindrical platinum electrode technique. Physiol Plant 35:21–26

    Article  Google Scholar 

  • Armstrong W, Cringle S, Brown M, Greenway H (1993) A micro-electrode study of oxygen distribution in the roots of intact maize seedlings. In: Jackson MB, Black CR (eds) Interacting stresses on plants in a changing climate, vol 16, NATO ASI Series 1. Springer, Berlin, pp 287–304

    Chapter  Google Scholar 

  • Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM (2000) Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot 86:687–703

    Article  Google Scholar 

  • Armstrong J, Jones RE, Armstrong W (2006) Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. New Phytol 172:719–731

    Article  CAS  PubMed  Google Scholar 

  • Armstrong J, Keep R, Armstrong W (2009) Effects of oil on internal gas transport, radial oxygen loss, gas films and bud growth in Phragmites australis. Ann Bot 103:333

    Article  CAS  PubMed  Google Scholar 

  • Ast C, Schmälzlin E, Löhmannsröben HG, van Dongen JT (2012) Optical oxygen micro- and nanosensors for plant applications. Sensors (Basel) 12:7015–7032

    Article  CAS  Google Scholar 

  • Baleizão C, Nagl S, Schäferling M, Berberan-Santos MN, Wolfbeis OS (2008) Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity. Anal Chem 80:6449–6457

    Article  PubMed  Google Scholar 

  • Becker W (2008) The bh TCSPC handbook, 3rd edn. Becker & Hickl GmbH, Berlin

    Google Scholar 

  • Blossfeld S, Gansert D, Thiele B, Kuhn AJ, Lösch R (2011) The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp. Soil Biol Biochem 43:1186–1196

    Article  CAS  Google Scholar 

  • Bogdanov AM, Mishin AS, Yampolsky IV, Belousov VV, Chudakov DM, Subach FV, Verkhusha VV, Lukyanov S, Lukyanov KA (2009) Green fluorescent proteins are light-induced electron donors. Nat Chem Biol 5:459–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borchert NB, Ponomarev GV, Kerry JP, Papkovsky DB (2011) O(2)/pH multisensor based on one phosphorescent dye. Anal Chem 83:18–22

    Article  CAS  PubMed  Google Scholar 

  • Borisov SM, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem 19:7501–7509

    Article  Google Scholar 

  • Borisov SM, Seifner R, Klimant I (2011) A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature. Anal Bioanal Chem 400:2463–2474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowling DJF (1973) Measurement of a gradient of oxygen partial pressure across the intact root. Planta 111:323–328

    Article  CAS  Google Scholar 

  • Brandner K, Sambade A, Boutant E, Didier P, Mély Y, Ritzenthaler C, Heinlein M (2008) Tobacco mosaic virus movement protein interacts with green fluorescent protein-tagged microtubule end-binding protein 1. Plant Physiol 147:611–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castellano FN, Lakowicz JR (1998) A water-soluble luminescence oxygen sensor. Photochem Photobiol 67:179–183

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Chou JC, Lee HJ (2005) Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant Cell Physiol 46:482–488

    Article  CAS  PubMed  Google Scholar 

  • Clark LC, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    CAS  PubMed  Google Scholar 

  • Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836

    Article  CAS  PubMed  Google Scholar 

  • Davies PW (1962) The oxygen cathode. In: Nastuk WH (ed) Physical techniques in biological research, vol IV, Special methods. Academic, New York, pp 137–179

    Google Scholar 

  • Davies PW, Brink F (1942) Microelectrodes for measuring local oxygen tension in animal tissues. Rev Sci Instrum 13:524

    Article  CAS  Google Scholar 

  • Demas JN, DeGraff BA, Coleman PB (1999) Oxygen sensors based on luminescence quenching. Anal Chem 71:793A–800A

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev RI, Papkovsky DB (2012) Optical probes and techniques for O2 measurement in live cells and tissue. Cell Mol Life Sci 69:2025–2039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Draaijer A, Sanders R, Gerritsen HC (1995) Fluorescence lifetime imaging, a new tool in confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum Press, New York, pp 491–505

    Chapter  Google Scholar 

  • Drepper T, Eggert T, Circolone F, Heck A, Krauss U, Guterl JK, Wendorff M, Losi A, Gärtner W, Jaeger KE (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25:443–445

    Article  CAS  PubMed  Google Scholar 

  • Drepper T, Huber R, Heck A, Circolone F, Hillmer AK, Büchs J, Jaeger KE (2010) Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo real-time reporters. Appl Environ Microbiol 76:5990–5994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elowitz MB, Surette MG, Wolf PE, Stock J, Leibler S (1997) Photoactivation turns green fluorescent protein red. Curr Biol 7:809–812

    Article  CAS  PubMed  Google Scholar 

  • Erker W, Schoen A, Basché T, Decker H (2004) Fluorescence labels as sensors for oxygen binding of arthropod hemocyanins. Biochem Biophys Res Commun 324:893–900

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen SM, Glud RN (2006) Oxygen dynamics in the rhizosphere of Zostera marina: a two-dimensional planar optode study. Limnol Oceanogr 51:1072–1083

    Article  Google Scholar 

  • Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garthwaite AJ, Armstrong W, Comer TD (2008) Assessment of O2 diffusivity across the barrier to radial O2 loss in adventitious roots of Hordeum marinum. New Phytol 179:405–416

    Article  CAS  PubMed  Google Scholar 

  • Glud RN, Ramsing NB, Revsbech NP (1992) Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors. J Phycol 28:51–60

    Article  Google Scholar 

  • Grist SM, Chrostowski L, Cheung KC (2010) Optical oxygen sensors for applications in microfluidic cell culture. Sensors (Basel) 10:9286–9316

    Article  CAS  Google Scholar 

  • Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helmchen F, Tank DW, Denk W (2002) Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core. Appl Opt 41:2930–2934

    Article  PubMed  Google Scholar 

  • Kautsky H, Hirsch A (1935) Nachweis geringster Sauerstoffmengen durch Phosphoreszenztilgung. Z Anorg Allg Chem 222:126–134

    Article  CAS  Google Scholar 

  • Kocincova AS, Borisov SM, Krause C, Wolfbeis OS (2007) Fiber-optic microsensors for simultaneous sensing of oxygen and pH, and of oxygen and temperature. Anal Chem 79:8486–8493

    Article  CAS  PubMed  Google Scholar 

  • Kocincová AS, Nagl S, Arain S, Krause C, Borisov SM, Arnold M, Wolfbeis OS (2008) Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol Bioeng 100:430–438

    Article  PubMed  Google Scholar 

  • Kolthoff IM, Jordan J (1952) Oxygen induced electroreduction of hydrogen peroxide and reduction of oxygen at the rotated gold wire electrode. J Am Chem Soc 74:4801–4805

    Article  CAS  Google Scholar 

  • Köse ME, Carroll BF, Schanze KS (2005) Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films. Langmuir 21:9121–9129

    Article  PubMed  Google Scholar 

  • Laan P, Tosserams M, Blom CWPM, Armstrong W (1990) Internal oxygen transport in Rumex species and its significance for respiration under hypoxic conditions. Plant Soil 122:39–46

    Article  Google Scholar 

  • Lee YE, Kopelman R (2012) Nanoparticle PEBBLE sensors in live cells. Methods Enzymol 504:419–470

    CAS  PubMed  Google Scholar 

  • Löhmannsröben H-G, Beck M, Hildebrandt N, Schmälzlin E, van Dongen JT (2005) New challenges in biophotonics: laser-based fluoroimmuno analysis and in vivo optical oxygen monitoring. Proc SPIE 6157:20–25

    Google Scholar 

  • Mäe M, Myrberg H, Jiang Y, Paves H, Valkna A, Langel U (2005) Internalization of cell-penetrating peptides into tobacco protoplasts. Biochim Biophys Acta 1669:101–107

    Article  PubMed  Google Scholar 

  • Mancuso S, Papeschi G, Marras AM (2000) A polarographic, oxygen-selective, vibrating-microelectrode system for the spatial and temporal characterisation of transmembrane oxygen fluxes in plants. Planta 211:384–389

    Article  CAS  PubMed  Google Scholar 

  • Mills A, Lepre A (1997) Controlling the response characteristics of luminescent porphyrin plastic film sensors for oxygen. Anal Chem 69:4653–4659

    Article  CAS  Google Scholar 

  • Miyawaki A (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4:295–305

    Article  CAS  PubMed  Google Scholar 

  • Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, Moran N, Keyes TE (2008) Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging. Chem Commun 42:5307–5309

    Article  Google Scholar 

  • Ober ES, Sharp RE (1996) A microsensor for direct measurement of O2 partial pressure within plant tissues. J Exp Bot 47:447–454

    Article  CAS  Google Scholar 

  • Papkovsky DB, O’Riordan TC (2005) Emerging applications of phosphorescent metalloporphyrins. J Fluoresc 4:569–584

    Article  Google Scholar 

  • Potzkei J, Kunze M, Drepper T, Gensch T, Jaeger KE, Büchs J (2012) Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol 10:28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Precht E, Franke U, Polerecky L, Huettel M (2004) Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnol Oceanogr 49:693–705

    Article  CAS  Google Scholar 

  • Revsbech NP, Jørgensen BB (1986) Micro-electrodes: their use in microbial ecology. Adv Microb Ecol 9:293–352

    Article  Google Scholar 

  • Revsbech NP, Ward DM (1983) Oxygen micro-electrode that is insensitive to medium chemical composition: use in an acid microbial mat dominated by Cyanidium caldarium. Appl Environ Microbiol 45:755–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rolletschek H, Stangelmeyer A, Borisjuk L (2009) Methodology and significance of microsensor-based oxygen mapping in plant seeds—an overview. Sensors (Basel) 9:3218–3227

    Article  CAS  Google Scholar 

  • Rosenzweig Z, Kopelman R (1995) Development of a submicrometer optical fiber oxygen sensor. Anal Chem 67:2650–2654

    Article  CAS  PubMed  Google Scholar 

  • Rothbard JB, Kreider E, Pattabiraman K, Pelkey ET, VanDeusen CL, Wright L, Wylie BL, Wender PA (2002) Arginine-rich molecular transporters for drugs: the role of backbone and sidechain variations on cellular uptake. In: Langel Ãœ (ed) Cell-penetrating peptides: processes and applications. CRC Press, Boca Raton, FL, pp 141–160

    Google Scholar 

  • Rudolph N, Esser HG, Carminati A, Moradi AB, Hilger A, Kardjilov N, Nagl S, Oswald SE (2012) Dynamic oxygen mapping in the root zone by fluorescence dye imaging combined with neutron radiography. J Soil Sediment 12:63–74

    Article  CAS  Google Scholar 

  • Sawin KE, Nurse P (1997) Photoactivation of green fluorescent protein. Curr Biol 7:606–607

    Article  Google Scholar 

  • Schäferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed Engl 51:3532–3554

    Article  PubMed  Google Scholar 

  • Schmälzlin E, van Dongen JT, Klimant I, Marmodée B, Steup M, Fisahn J, Geigenberger P, Löhmannsröben HG (2005) An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys J 89:1339–1345

    Article  PubMed Central  PubMed  Google Scholar 

  • Steinbrück D, Schmälzlin E, Peinemann F, Kumke MU (2011) An innovative laser-based sensing platform for realtime optical monitoring of oxygen. In: Proceedings of joint international IMEKO TC1+ TC7+ TC13 symposium, Jena, 31 Aug to 2 Sept 2011

    Google Scholar 

  • Stepinac TK, Chamot SR, Rungger-Brändle E, Ferrez P, Munoz JL, van den Bergh H, Riva CE, Pournaras CJ, Wagnières GA (2005) Light-induced retinal vascular damage by Pd-porphyrin luminescent oxygen probes. Invest Ophthalmol Vis Sci 46:956–966

    Article  PubMed  Google Scholar 

  • Stich MI, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39:3102–3114

    Article  CAS  PubMed  Google Scholar 

  • Tantama M, Hung YP, Yellen G (2011) Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc 133:10034–10037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tjepkema JD, Yocum CS (1974) Measurement of oxygen partial pressure within soybean nodules by oxygen microelectrodes. Planta 119:351–360

    Article  Google Scholar 

  • Tschiersch H, Liebsch G, Borisjuk L, Stangelmayer A, Rolletschek H (2012) An imaging method for oxygen distribution, respiration and photosynthesis at a microscopic level of resolution. New Phytol 196:926–936

    Article  CAS  PubMed  Google Scholar 

  • Vaughan WM, Weber G (1970) Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry 9:464–473

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol 116:1403–1412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vivès E, Richard J-P, Rispal C, Lebleu B (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4:125–132

    Article  PubMed  Google Scholar 

  • Walter J, Hausmann S, Drepper T, Puls M, Eggert T, Dihné M (2012) Flavin mononucleotide-based fluorescent proteins function in mammalian cells without oxygen requirement. PLoS One 7:e43921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang XD, Stolwijk JA, Lang T, Sperber M, Meier RJ, Wegener J, Wolfbeis OS (2012) Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J Am Chem Soc 134:17011–17014

    Article  CAS  PubMed  Google Scholar 

  • Witty JF, Skot L, Revsbech NP (1987) Direct evidence for changes in the resistance of legume nodules to oxygen diffusion. J Exp Bot 38:1129–1140

    Article  Google Scholar 

  • Zhang P, Guo J, Wang Y, Pang W (2002) Incorporation of luminescent tris(bipyridine)ruthenium(II) complex in mesoporous silica spheres and their spectroscopic and oxygen sensing properties. Mater Lett 53:400–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Ast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Ast, C., Draaijer, A. (2014). Methods and Techniques to Measure Molecular Oxygen in Plants. In: van Dongen, J., Licausi, F. (eds) Low-Oxygen Stress in Plants. Plant Cell Monographs, vol 21. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1254-0_21

Download citation

Publish with us

Policies and ethics