Skip to main content

Nutrition of the Burned Patient and Treatment of the Hypermetabolic Response

  • Chapter
  • First Online:
Burn Care and Treatment

Abstract

Advances in therapy strategies, based on improved understanding of resuscitation, enhanced wound coverage, more appropriate infection control, and improved treatment of inhalation injury, improved the clinical outcome of burn patients over the past years [1, 2]. However, severe burns remain a devastating injury affecting nearly every organ system and leading to significant morbidity and mortality [2]. One of the main contributors to adverse outcome of this patient population is the profound stress-induced hypermetabolic response, associated with severe alteration in glucose, lipid, and amino acid metabolism [1, 3–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herndon DN, Tompkins RG (2004) Support of the metabolic response to burn injury. Lancet 363:1895–1902

    Article  PubMed  CAS  Google Scholar 

  2. Kraft R, Herndon DN, Al-Mousawi AM, Williams FN, Finnerty CC, Jeschke MG (2012) Burn size and survival probability in paediatric patients in modern burn care: a prospective observational cohort study. Lancet 379:1013–1021

    Article  PubMed  Google Scholar 

  3. Jeschke MG, Chinkes DL, Finnerty CC et al (2008) Pathophysiologic response to severe burn injury. Ann Surg 248:387–401

    Article  PubMed  Google Scholar 

  4. Jeschke MG, Gauglitz GG, Kulp GA et al (2011) Long-term persistance of the pathophysiologic response to severe burn injury. PLoS One 6:e21245

    Article  PubMed  CAS  Google Scholar 

  5. McCowen KC, Malhotra A, Bistrian BR (2001) Stress-induced hyperglycemia. Crit Care Clin 17:107–124

    Article  PubMed  CAS  Google Scholar 

  6. Hart DW, Wolf SE, Chinkes DL et al (2000) Determinants of skeletal muscle catabolism after severe burn. Ann Surg 232:455–465

    Article  PubMed  CAS  Google Scholar 

  7. Mlcak RP, Jeschke MG, Barrow RE, Herndon DN (2006) The influence of age and gender on resting energy expenditure in severely burned children. Ann Surg 244:121–130

    Article  PubMed  Google Scholar 

  8. Przkora R, Barrow RE, Jeschke MG et al (2006) Body composition changes with time in pediatric burn patients. J Trauma 60:968–971; discussion 71

    Article  PubMed  Google Scholar 

  9. Przkora R, Herndon DN, Suman OE et al (2006) Beneficial effects of extended growth hormone treatment after hospital discharge in pediatric burn patients. Ann Surg 243:796–801; discussion 3

    Article  PubMed  Google Scholar 

  10. Dolecek R (1989) Endocrine changes after burn trauma – a review. Keio J Med 38:262–276

    Article  PubMed  CAS  Google Scholar 

  11. Jeffries MK, Vance ML (1992) Growth hormone and cortisol secretion in patients with burn injury. J Burn Care Rehabil 13:391–395

    Article  PubMed  CAS  Google Scholar 

  12. Jeschke MG, Klein D, Herndon DN (2004) Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg 239:553–560

    Article  PubMed  Google Scholar 

  13. Goodall M, Stone C, Haynes BW Jr (1957) Urinary output of adrenaline and noradrenaline in severe thermal burns. Ann Surg 145:479–487

    Article  PubMed  CAS  Google Scholar 

  14. Coombes EJ, Batstone GF (1982) Urine cortisol levels after burn injury. Burns Incl Therm Inj 8:333–337

    Article  PubMed  CAS  Google Scholar 

  15. Norbury WB, Herndon DN (2007) Modulation of the hypermetabolic response after burn injury. In: Herndon DN (ed) Total burn care, 3rd edn. Saunders Elsevier, New York, pp 420–433

    Chapter  Google Scholar 

  16. Sheridan RL (2001) A great constitutional disturbance. N Engl J Med 345:1271–1272

    Article  PubMed  CAS  Google Scholar 

  17. Pereira C, Murphy K, Jeschke M, Herndon DN (2005) Post burn muscle wasting and the effects of treatments. Int J Biochem Cell Biol 37:1948–1961

    Article  PubMed  CAS  Google Scholar 

  18. Wolfe RR (1981) Review: acute versus chronic response to burn injury. Circ Shock 8:105–115

    PubMed  CAS  Google Scholar 

  19. Cuthbertson DP, Angeles Valero Zanuy MA, Leon Sanz ML (2001) Post-shock metabolic response. 1942. Nutr Hosp 16:176–182; discussion 5–6

    PubMed  CAS  Google Scholar 

  20. Galster AD, Bier DM, Cryer PE, Monafo WW (1984) Plasma palmitate turnover in subjects with thermal injury. J Trauma 24:938–945

    Article  PubMed  CAS  Google Scholar 

  21. Cree MG, Wolfe RR (2008) Postburn trauma insulin resistance and fat metabolism. Am J Physiol Endocrinol Metab 294:E1–E9

    Article  PubMed  CAS  Google Scholar 

  22. Childs C, Heath DF, Little RA, Brotherston M (1990) Glucose metabolism in children during the first day after burn injury. Arch Emerg Med 7:135–147

    Article  PubMed  CAS  Google Scholar 

  23. Cree MG, Aarsland A, Herndon DN, Wolfe RR (2007) Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance. Crit Care Med 35:S476–S483

    Article  PubMed  CAS  Google Scholar 

  24. Gauglitz GG, Herndon DN, Kulp GA, Meyer WJ 3rd, Jeschke MG (2009) Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn. J Clin Endocrinol Metabol 94:1656–1664

    Article  CAS  Google Scholar 

  25. Wolfe RR, Durkot MJ, Allsop JR, Burke JF (1979) Glucose metabolism in severely burned patients. Metabolism 28:1031–1039

    Article  PubMed  CAS  Google Scholar 

  26. Wolfe RR, Herndon DN, Peters EJ, Jahoor F, Desai MH, Holland OB (1987) Regulation of lipolysis in severely burned children. Ann Surg 206:214–221

    Article  PubMed  CAS  Google Scholar 

  27. Wolfe RR, Jahoor F, Hartl WH (1989) Protein and amino acid metabolism after injury. Diabetes Metab Rev 5:149–164

    Article  PubMed  CAS  Google Scholar 

  28. Wolfe RR, Miller HI, Spitzer JJ (1977) Glucose and lactate kinetics in burn shock. Am J Physiol 232:E415–E418

    PubMed  CAS  Google Scholar 

  29. Wilmore DW (1976) Hormonal responses and their effect on metabolism. Surg Clin North Am 56:999–1018

    PubMed  CAS  Google Scholar 

  30. Wilmore DW, Aulick LH (1978) Metabolic changes in burned patients. Surg Clin North Am 58:1173–1187

    PubMed  CAS  Google Scholar 

  31. Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE, Desai M (2001) Association of hyperglycemia with increased mortality after severe burn injury. J Trauma 51:540–544

    Article  PubMed  CAS  Google Scholar 

  32. Gore DC, Chinkes DL, Hart DW, Wolf SE, Herndon DN, Sanford AP (2002) Hyperglycemia exacerbates muscle protein catabolism in burn-injured patients. Crit Care Med 30:2438–2442

    Article  PubMed  CAS  Google Scholar 

  33. Hemmila MR, Taddonio MA, Arbabi S, Maggio PM, Wahl WL (2008) Intensive insulin therapy is associated with reduced infectious complications in burn patients. Surgery 144:629–635; discussion 35–37

    Article  PubMed  Google Scholar 

  34. Jeschke MG, Kulp GA, Kraft R et al (2010) Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med 182:351–359

    Article  PubMed  CAS  Google Scholar 

  35. Barrow RE, Wolfe RR, Dasu MR, Barrow LN, Herndon DN (2006) The use of beta-adrenergic blockade in preventing trauma-induced hepatomegaly. Ann Surg 243:115–120

    Article  PubMed  Google Scholar 

  36. Martini WZ, Irtun O, Chinkes DL, Rasmussen B, Traber DL, Wolfe RR (2001) Alteration of hepatic fatty acid metabolism after burn injury in pigs. JPEN J Parenter Enteral Nutr 25:310–316

    Article  PubMed  CAS  Google Scholar 

  37. Morio B, Irtun O, Herndon DN, Wolfe RR (2002) Propranolol decreases splanchnic triacylglycerol storage in burn patients receiving a high-carbohydrate diet. Ann Surg 236:218–225

    Article  PubMed  Google Scholar 

  38. Barret JP, Jeschke MG, Herndon DN (2001) Fatty infiltration of the liver in severely burned pediatric patients: autopsy findings and clinical implications. J Trauma 51:736–739

    Article  PubMed  CAS  Google Scholar 

  39. Gore DC, Ferrando A, Barnett J et al (2000) Influence of glucose kinetics on plasma lactate concentration and energy expenditure in severely burned patients. J Trauma 49:673–677; discussion 7–8

    Article  PubMed  CAS  Google Scholar 

  40. Jeschke MG, Klein D, Thasler WE et al (2008) Insulin decreases inflammatory signal transcription factor expression in primary human liver cells after LPS challenge. Mol Med 14:11–19

    Article  PubMed  CAS  Google Scholar 

  41. Pham TN, Warren AJ, Phan HH, Molitor F, Greenhalgh DG, Palmieri TL (2005) Impact of tight glycemic control in severely burned children. J Trauma 59:1148–1154

    Article  PubMed  Google Scholar 

  42. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462

    Article  PubMed  CAS  Google Scholar 

  43. Jeschke MG, Finnerty CC, Herndon DN et al (2012) Severe injury is associated with insulin resistance, endoplasmic reticulum stress response, and unfolded protein response. Ann Surg 255:370–378

    Article  PubMed  Google Scholar 

  44. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    Article  PubMed  CAS  Google Scholar 

  45. Boden G, Chen X, Ruiz J, Heifets M, Morris M, Badosa F (1994) Insulin receptor down-­regulation and impaired antilipolytic action of insulin in diabetic patients after pancreas/kidney transplantation. J Clin Endocrinol Metabol 78:657–663

    Article  CAS  Google Scholar 

  46. Shah P, Vella A, Basu A et al (2002) Effects of free fatty acids and glycerol on splanchnic glucose metabolism and insulin extraction in nondiabetic humans. Diabetes 51:301–310

    Article  PubMed  CAS  Google Scholar 

  47. Dresner A, Laurent D, Marcucci M et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259

    Article  PubMed  CAS  Google Scholar 

  48. Pankow JS, Duncan BB, Schmidt MI et al (2004) Fasting plasma free fatty acids and risk of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes Care 27:77–82

    Article  PubMed  CAS  Google Scholar 

  49. Herndon DN, Nguyen TT, Wolfe RR et al (1994) Lipolysis in burned patients is stimulated by the beta 2-receptor for catecholamines. Arch Surg 129:1301–1304; discussion 4–5

    Article  PubMed  CAS  Google Scholar 

  50. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317:403–408

    Article  PubMed  CAS  Google Scholar 

  51. Barrow RE, Hawkins HK, Aarsland A et al (2005) Identification of factors contributing to hepatomegaly in severely burned children. Shock 24:523–528

    Article  PubMed  Google Scholar 

  52. Jeschke MG (2009) The hepatic response to thermal injury: is the liver important for postburn outcomes? Mol Med 15:337–351

    Article  PubMed  CAS  Google Scholar 

  53. Cree MG, Newcomer BR, Herndon DN et al (2007) PPAR-alpha agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial. Nutr Metab (Lond) 4:9

    Article  CAS  Google Scholar 

  54. Cree MG, Newcomer BR, Katsanos CS et al (2004) Intramuscular and liver triglycerides are increased in the elderly. J Clin Endocrinol Metabol 89:3864–3871

    Article  CAS  Google Scholar 

  55. Petersen KF, Befroy D, Dufour S et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    Article  PubMed  CAS  Google Scholar 

  56. Saffle JR, Graves C (2007) Nutritional support of the burned patient. In: Herndon DN (ed) Total burn care, 3rd edn. Saunders Elsevier, London, pp 398–419

    Chapter  Google Scholar 

  57. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP (1981) The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30:1000–1007

    PubMed  CAS  Google Scholar 

  58. Arora NS, Rochester DF (1982) Respiratory muscle strength and maximal voluntary ventilation in undernourished patients. Am Rev Respir Dis 126:5–8

    PubMed  CAS  Google Scholar 

  59. Mochizuki H, Trocki O, Dominioni L, Brackett KA, Joffe SN, Alexander JW (1984) Mechanism of prevention of postburn hypermetabolism and catabolism by early enteral feeding. Ann Surg 200:297–310

    Article  PubMed  CAS  Google Scholar 

  60. Hart DW, Wolf SE, Zhang XJ et al (2001) Efficacy of a high-carbohydrate diet in catabolic illness. Crit Care Med 29:1318–1324

    Article  PubMed  CAS  Google Scholar 

  61. Mayes T, Gottschlich MM, Kagan RJ (2008) An evaluation of the safety and efficacy of an anti-inflammatory, pulmonary enteral formula in the treatment of pediatric burn patients with respiratory failure. J Burn Care Res 29:82–88

    PubMed  Google Scholar 

  62. Gore DC, Chinkes D, Sanford A, Hart DW, Wolf SE, Herndon DN (2003) Influence of fever on the hypermetabolic response in burn-injured children. Arch Surg 138:169–174; discussion 74

    Article  PubMed  Google Scholar 

  63. Raff T, Germann G, Hartmann B (1997) The value of early enteral nutrition in the prophylaxis of stress ulceration in the severely burned patient. Burns 23:313–318

    Article  PubMed  CAS  Google Scholar 

  64. Suman OE, Mlcak RP, Chinkes DL, Herndon DN (2006) Resting energy expenditure in severely burned children: analysis of agreement between indirect calorimetry and prediction equations using the Bland-Altman method. Burns 32:335–342

    Article  PubMed  Google Scholar 

  65. Gore DC, Rutan RL, Hildreth M, Desai MH, Herndon DN (1990) Comparison of resting energy expenditures and caloric intake in children with severe burns. J Burn Care Rehabil 11:400–404

    Article  PubMed  CAS  Google Scholar 

  66. Wolfe RR (1993) Metabolic response to burn injury: nutritional implications. Semin Nephrol 13:382–390

    PubMed  CAS  Google Scholar 

  67. Wolfe RR (1998) Metabolic interactions between glucose and fatty acids in humans. Am J Clin Nutr 67:519S–526S

    PubMed  CAS  Google Scholar 

  68. Demling RH, Seigne P (2000) Metabolic management of patients with severe burns. World J Surg 24:673–680

    Article  PubMed  CAS  Google Scholar 

  69. Alexander JW, William A (1986) Altemeier lecture. Nutrition and infection. New perspectives for an old problem. Arch Surg 121:966–972

    Article  PubMed  CAS  Google Scholar 

  70. Wolfe RR, Shaw JH, Durkot MJ (1983) Energy metabolism in trauma and sepsis: the role of fat. Prog Clin Biol Res 111:89–109

    PubMed  CAS  Google Scholar 

  71. Yu B, Wang S, You Z (1995) Enhancement of gut absorptive function by early enteral feeding enriched with L-glutamine in severe burned miniswines. Zhonghua Wai Ke Za Zhi 33:742–744

    PubMed  CAS  Google Scholar 

  72. Wolfe RR (1997) Substrate utilization/insulin resistance in sepsis/trauma. Baillieres Clin Endocrinol Metab 11:645–657

    Article  PubMed  CAS  Google Scholar 

  73. Wolfe RR, Durkot MJ, Wolfe MH (1982) Effect of thermal injury on energy metabolism, substrate kinetics, and hormonal concentrations. Circ Shock 9:383–394

    PubMed  CAS  Google Scholar 

  74. Wolfe RR, Klein S, Herndon DN, Jahoor F (1990) Substrate cycling in thermogenesis and amplification of net substrate flux in human volunteers and burned patients. J Trauma 30:S6–S9

    Article  PubMed  CAS  Google Scholar 

  75. Andel H, Kamolz LP, Horauf K, Zimpfer M (2003) Nutrition and anabolic agents in burned patients. Burns 29:592–595

    Article  PubMed  Google Scholar 

  76. Peng X, Chen RC, Wang P, You ZY, Wang SL (2004) Effects of enteral supplementation with glutamine on mitochondria respiratory function of intestinal epithelium in burned rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 16:93–96

    PubMed  CAS  Google Scholar 

  77. Wischmeyer PE (2006) The glutamine story: where are we now? Curr Opin Crit Care 12:142–148

    Article  PubMed  Google Scholar 

  78. Wischmeyer PE, Lynch J, Liedel J et al (2001) Glutamine administration reduces gram-­negative bacteremia in severely burned patients: a prospective, randomized, double-blind trial versus isonitrogenous control. Crit Care Med 29:2075–2080

    Article  PubMed  CAS  Google Scholar 

  79. Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR (1980) Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg 192:570–580

    Article  PubMed  CAS  Google Scholar 

  80. Gamliel Z, DeBiasse MA, Demling RH (1996) Essential microminerals and their response to burn injury. J Burn Care Rehabil 17:264–272

    PubMed  CAS  Google Scholar 

  81. Gottschlich MM, Mayes T, Khoury J, Warden GD (2004) Hypovitaminosis D in acutely injured pediatric burn patients. J Am Diet Assoc 104:931–941, quiz 1031

    Article  PubMed  Google Scholar 

  82. Mayes T, Gottschlich MM, Warden GD (1997) Clinical nutrition protocols for continuous quality improvements in the outcomes of patients with burns. J Burn Care Rehabil 18:365–368; discussion 4

    Article  PubMed  CAS  Google Scholar 

  83. Berger MM, Shenkin A (2007) Trace element requirements in critically ill burned patients.J Trace Elem Med Biol 21(Suppl 1):44–48

    Article  PubMed  CAS  Google Scholar 

  84. Berger MM, Binnert C, Chiolero RL et al (2007) Trace element supplementation after major burns increases burned skin trace element concentrations and modulates local protein metabolism but not whole-body substrate metabolism. Am J Clin Nutr 85:1301–1306

    PubMed  CAS  Google Scholar 

  85. Berger MM, Baines M, Raffoul W et al (2007) Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations. Am J Clin Nutr 85:1293–1300

    PubMed  CAS  Google Scholar 

  86. Berger MM, Eggimann P, Heyland DK et al (2006) Reduction of nosocomial pneumonia after major burns by trace element supplementation: aggregation of two randomised trials. Crit Care 10:R153

    Article  PubMed  Google Scholar 

  87. Berger MM (2006) Antioxidant micronutrients in major trauma and burns: evidence and practice. Nutr Clin Pract 21:438–449

    Article  PubMed  Google Scholar 

  88. Berger MM, Shenkin A (2006) Vitamins and trace elements: practical aspects of supplementation. Nutrition 22:952–955

    Article  PubMed  CAS  Google Scholar 

  89. Berger MM (2005) Can oxidative damage be treated nutritionally? Clin Nutr 24:172–183

    Article  PubMed  CAS  Google Scholar 

  90. Herndon DN, Hawkins HK, Nguyen TT, Pierre E, Cox R, Barrow RE (1995) Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns. Ann Surg 221:649–656

    Article  PubMed  CAS  Google Scholar 

  91. Solomon JR (1981) Early surgical excision and grafting of burns including tangential excision. Prog Pediatr Surg 14:133–149

    PubMed  CAS  Google Scholar 

  92. Zawacki BE, Spitzer KW, Mason AD Jr, Johns LA (1970) Does increased evaporative water loss cause hypermetabolism in burned patients? Ann Surg 171:236–240

    Article  PubMed  CAS  Google Scholar 

  93. Wilmore DW, Mason AD Jr, Johnson DW, Pruitt BA Jr (1975) Effect of ambient temperature on heat production and heat loss in burn patients. J Appl Physiol 38:593–597

    PubMed  CAS  Google Scholar 

  94. Suman OE, Spies RJ, Celis MM, Mlcak RP, Herndon DN (2001) Effects of a 12-week resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol 91:1168–1175

    PubMed  CAS  Google Scholar 

  95. Jeschke MG, Herndon DN, Wolf SE et al (1999) Recombinant human growth hormone alters acute phase reactant proteins, cytokine expression, and liver morphology in burned rats.J Surg Res 83:122–129

    Article  PubMed  CAS  Google Scholar 

  96. Wu X, Thomas SJ, Herndon DN, Sanford AP, Wolf SE (2004) Insulin decreases hepatic acute phase protein levels in severely burned children. Surgery 135:196–202

    Article  PubMed  Google Scholar 

  97. Jeschke MG, Chrysopoulo MT, Herndon DN, Wolf SE (1999) Increased expression of insulin-like growth factor-I in serum and liver after recombinant human growth hormone administration in thermally injured rats. J Surg Res 85:171–177

    Article  PubMed  CAS  Google Scholar 

  98. Aili Low JF, Barrow RE, Mittendorfer B, Jeschke MG, Chinkes DL, Herndon DN (2001) The effect of short-term growth hormone treatment on growth and energy expenditure in burned children. Burns 27:447–452

    Article  PubMed  CAS  Google Scholar 

  99. Hart DW, Wolf SE, Beauford RB, Lal SO, Chinkes DL, Herndon DN (2001) Determinants of blood loss during primary burn excision. Surgery 130:396–402

    Article  PubMed  CAS  Google Scholar 

  100. Branski LK, Herndon DN, Barrow RE et al (2009) Randomized controlled trial to determine the efficacy of long-term growth hormone treatment in severely burned children. Ann Surg 250(4):514–523

    PubMed  Google Scholar 

  101. Takala J, Ruokonen E, Webster NR et al (1999) Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 341:785–792

    Article  PubMed  CAS  Google Scholar 

  102. Gore DC, Honeycutt D, Jahoor F, Wolfe RR, Herndon DN (1991) Effect of exogenous growth hormone on whole-body and isolated-limb protein kinetics in burned patients. Arch Surg 126:38–43

    Article  PubMed  CAS  Google Scholar 

  103. Demling R (1999) Growth hormone therapy in critically ill patients. N Engl J Med 341:837–839

    Article  PubMed  CAS  Google Scholar 

  104. Ramirez RJ, Wolf SE, Barrow RE, Herndon DN (1998) Growth hormone treatment in pediatric burns: a safe therapeutic approach. Ann Surg 228:439–448

    Article  PubMed  CAS  Google Scholar 

  105. Herndon DN, Ramzy PI, Debroy MA et al (1999) Muscle protein catabolism after severe burn, effects of IGF-1/IGFBP3 treatment. Ann Surg 229:713–720

    Article  PubMed  CAS  Google Scholar 

  106. Spies M, Wolf SE, Barrow RE, Jeschke MG, Herndon DN (2002) Modulation of types I and II acute phase reactants with insulin-like growth factor-1/binding protein-3 complex in severely burned children. Crit Care Med 30:83–88

    Article  PubMed  CAS  Google Scholar 

  107. Jeschke MG, Barrow RE, Herndon DN (2000) Insulinlike growth factor I plus insulinlike growth factor binding protein 3 attenuates the proinflammatory acute phase response in severely burned children. Ann Surg 231:246–252

    Article  PubMed  CAS  Google Scholar 

  108. Cioffi WG, Gore DC, Rue LW III et al (1994) Insulin-like growth factor-1 lowers protein oxidation in patients with thermal injury. Ann Surg 220(3):310–319

    Article  PubMed  CAS  Google Scholar 

  109. Hart DW, Wolf SE, Ramzy PI et al (2001) Anabolic effects of oxandrolone after severe burn. Ann Surg 233:556–564

    Article  PubMed  CAS  Google Scholar 

  110. Wolf SE, Edelman LS, Kemalyan N et al (2006) Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double-blind trial. J Burn Care Res 27:131–141

    Article  PubMed  Google Scholar 

  111. Jeschke MG, Finnerty CC, Suman OE, Kulp G, Mlcak RP, Herndon DN (2007) The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann Surg 246:351–362

    Article  PubMed  Google Scholar 

  112. Demling RH, DeSanti L (2003) Oxandrolone induced lean mass gain during recovery from severe burns is maintained after discontinuation of the anabolic steroid. Burns 29:793–797

    Article  PubMed  Google Scholar 

  113. Demling RH, DeSanti L (2001) The rate of restoration of body weight after burn injury, using the anabolic agent oxandrolone, is not age dependent. Burns 27:46–51

    Article  PubMed  CAS  Google Scholar 

  114. Pham TN, Klein MB, Gibran NS et al (2008) Impact of oxandrolone treatment on acute outcomes after severe burn injury. J Burn Care Res 29:902–906

    Article  PubMed  Google Scholar 

  115. Przkora R, Herndon DN, Suman OE (2007) The effects of oxandrolone and exercise on muscle mass and function in children with severe burns. Pediatrics 119:e109–e116

    Article  PubMed  Google Scholar 

  116. Gore DC, Honeycutt D, Jahoor F, Barrow RE, Wolfe RR, Herndon DN (1991) Propranolol diminishes extremity blood flow in burned patients. Ann Surg 213:568–573; discussion 73–74

    Article  PubMed  CAS  Google Scholar 

  117. Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR (2001) Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 345:1223–1229

    Article  PubMed  CAS  Google Scholar 

  118. Baron PW, Barrow RE, Pierre EJ, Herndon DN (1997) Prolonged use of propranolol safely decreases cardiac work in burned children. J Burn Care Rehabil 18:223–227

    Article  PubMed  CAS  Google Scholar 

  119. Aarsland A, Chinkes D, Wolfe RR et al (1996) Beta-blockade lowers peripheral lipolysis in burn patients receiving growth hormone. Rate of hepatic very low density lipoprotein triglyceride secretion remains unchanged. Ann Surg 223:777–787; discussion 87–89

    Article  PubMed  CAS  Google Scholar 

  120. Ferrando AA, Chinkes DL, Wolf SE, Matin S, Herndon DN, Wolfe RR (1999) A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns. Ann Surg 229:11–18

    Article  PubMed  CAS  Google Scholar 

  121. Pierre EJ, Barrow RE, Hawkins HK et al (1998) Effects of insulin on wound healing. J Trauma 44:342–345

    Article  PubMed  CAS  Google Scholar 

  122. Thomas SJ, Morimoto K, Herndon DN et al (2002) The effect of prolonged euglycemic hyperinsulinemia on lean body mass after severe burn. Surgery 132:341–347

    Article  PubMed  CAS  Google Scholar 

  123. Zhang XJ, Chinkes DL, Wolf SE, Wolfe RR (1999) Insulin but not growth hormone stimulates protein anabolism in skin would and muscle. Am J Physiol 276:E712–E720

    PubMed  CAS  Google Scholar 

  124. Jeschke MG, Klein D, Bolder U, Einspanier R (2004) Insulin attenuates the systemic inflammatory response in endotoxemic rats. Endocrinology 145:4084–4093

    Article  PubMed  CAS  Google Scholar 

  125. Jeschke MG, Rensing H, Klein D et al (2005) Insulin prevents liver damage and preserves liver function in lipopolysaccharide-induced endotoxemic rats. J Hepatol 42:870–879

    Article  PubMed  CAS  Google Scholar 

  126. Klein D, Schubert T, Horch RE, Jauch KW, Jeschke MG (2004) Insulin treatment improves hepatic morphology and function through modulation of hepatic signals after severe trauma. Ann Surg 240:340–349

    Article  PubMed  Google Scholar 

  127. Langouche L, Vanhorebeek I, Van den Berghe G (2007) Therapy insight: the effect of tight glycemic control in acute illness. Nat Clin Pract Endocrinol Metab 3:270–278

    Article  PubMed  Google Scholar 

  128. Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139

    Article  PubMed  CAS  Google Scholar 

  129. Gore DC, Wolf SE, Herndon DN, Wolfe RR (2003) Metformin blunts stress-induced hyperglycemia after thermal injury. J Trauma 54:555–561

    Article  PubMed  CAS  Google Scholar 

  130. Gore DC, Wolf SE, Sanford A, Herndon DN, Wolfe RR (2005) Influence of metformin on glucose intolerance and muscle catabolism following severe burn injury. Ann Surg 241:334–342

    Article  PubMed  Google Scholar 

  131. Moon RJ, Bascombe LA, Holt RI (2007) The addition of metformin in type 1 diabetes improves insulin sensitivity, diabetic control, body composition and patient well-being. Diabetes Obes Metab 9:143–145

    Article  PubMed  CAS  Google Scholar 

  132. Staels B (2006) Metformin and pioglitazone: effectively treating insulin resistance. Curr Med Res Opin 22(Suppl 2):S27–S37

    Article  PubMed  CAS  Google Scholar 

  133. Musi N, Goodyear LJ (2006) Insulin resistance and improvements in signal transduction. Endocrine 29:73–80

    Article  PubMed  CAS  Google Scholar 

  134. Hundal RS, Inzucchi SE (2003) Metformin: new understandings, new uses. Drugs 63:1879–1894

    Article  PubMed  CAS  Google Scholar 

  135. Tahrani AA, Varughese GI, Scarpello JH, Hanna FW (2007) Metformin, heart failure, and lactic acidosis: is metformin absolutely contraindicated? BMJ 335:508–512

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Jeschke MD, PhD, FACS, FCCM, FRCS(C) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Jeschke, M.G. (2013). Nutrition of the Burned Patient and Treatment of the Hypermetabolic Response. In: Jeschke, M., Kamolz, LP., Shahrokhi, S. (eds) Burn Care and Treatment. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1133-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1133-8_7

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1132-1

  • Online ISBN: 978-3-7091-1133-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics