Skip to main content

Copper uptake and trafficking in the brain

  • Chapter
  • First Online:
Metal Ions in Neurological Systems

Abstract

The aim of this chapter is to give a general view on the current status of the scientific basis for the role of copper in human health and disease, outlining the roles of copper in human metabolism and bioenergetics, its coordination chemistry as well as the biological ligands involved in the multiple steps of metal incorporation. In particular, our attention has been focused towards the interaction of copper status and brain function in health and disease, with particular consideration to the role of copper in the pathogenesis of Wilson’s, of Menkes, and of human neurodegenerative diseases. Data on interactions between essential trace elements and copper, from the level of absorption in the gut to other systems in the body, are also presented. Particular attention is paid to copper-dependent enzymes in the central nervous system and to copper uptake and trafficking in brain cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weast RC (ed) (1970) Handbook of chemistry and physics. Chemical Rubber Co., Cleveland

    Google Scholar 

  2. Seymour CA, Howell JM, Gawthorne JM (eds) (1987) Copper in animals and man. CRC, Boca Raton, FL

    Google Scholar 

  3. Manzl C, Enrich J, Ebner H, Dallinger R, Krumschnabel G (2004) Copper-induced formation of reactive oxygen species causes cell death and disruption of calcium homeostasis in trout hepatocytes. Toxicology 196:57

    Article  PubMed  CAS  Google Scholar 

  4. Farinati F, Cardin R, D’Inca R, Naccarato R, Sturniolo GC (2003) Zinc treatment prevents lipid peroxidation and increases glutathione availability in Wilson’s disease. J Lab Clin Med 141:372

    Article  PubMed  CAS  Google Scholar 

  5. Pourahmad J, O’Brien PJ, Jokar F, Daraei B (2003) Carcinogenic metal induced sites of reactive oxygen species formation in hepatocytes. Toxicol In Vitro 17:803

    Article  PubMed  CAS  Google Scholar 

  6. Krumschnabel G, Manzl C, Berger C, Hofer B (2005) Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes. Toxicol Appl Pharmacol 209:62

    Article  PubMed  CAS  Google Scholar 

  7. Nawaz M, Manzl C, Lacher V, Krumschnabel G (2006) Copper-induced stimulation of extracellular signal-regulated kinase in trout hepatocytes: the role of reactive oxygen species, Ca2+, and cell energetics and the impact of extracellular signal-regulated kinase signaling on apoptosis and necrosis. Toxicol Sci 92:464–475

    Article  PubMed  CAS  Google Scholar 

  8. Pourahmad J, O’Brien PJ (2000) Contrasting role of Na(+) ions in modulating Cu(+2) or Cd(+2) induced hepatocyte toxicity. Chem Biol Interact 126:159

    Article  PubMed  CAS  Google Scholar 

  9. Urani C, Melchioretto P, Morazzoni F, Canevali C, Camatini M (2001) Copper and zinc uptake and hsp70 expression in HepG2 cells. Toxicol In Vitro 15:497

    Article  PubMed  CAS  Google Scholar 

  10. Balamurugan K, Schaffner W (2006) Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim Biophys Acta 1763:737

    Article  PubMed  CAS  Google Scholar 

  11. Sokol RJ, Twedt D, McKim JM Jr, Devereaux MW, Karrer FM, Kam I, von Steigman G, Narkewicz MR, Bacon BR, Britton RS et al (1994) Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis. Gastroenterology 107:1788

    PubMed  CAS  Google Scholar 

  12. Sternlieb I (1968) Mitochondral and fatty changes in hepatocytes of patients with Wilson’s disease. Gastroenterology 55:354

    PubMed  CAS  Google Scholar 

  13. Faa G, Nurchi V, Demelia L, Ambu R, Parodo G, Congiu T, Sciot R, Van Eyken P, Silvagni R, Crisponi G (1995) Uneven hepatic copper distribution in Wilson’s disease. J Hepatol 22:303

    Article  PubMed  CAS  Google Scholar 

  14. Faa G, Lisci M, Caria MP, Ambu R, Sciot R, Nurchi VM, Silvagni R, Diaz A, Crisponi G (2001) Brain copper, iron, magnesium, zinc, calcium, sulfur and phosphorus storage in Wilson disease. J Trace Elem Med Biol 15:155

    Article  PubMed  CAS  Google Scholar 

  15. Zischka H, Lichtmannegger J, Schmitt S, Jagemann N, Schulz S, Wartini D et al (2011) Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest 121:1508

    Article  PubMed  CAS  Google Scholar 

  16. Merle U, Stremmel W (2011) Copper toxicity in Wilson disease explained in a new way. Hepatology 54:358

    Article  PubMed  CAS  Google Scholar 

  17. Pena MM, Lee J, Thiele DJ (1999) A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129:1251–1260

    PubMed  CAS  Google Scholar 

  18. Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:317

    Article  PubMed  CAS  Google Scholar 

  19. Kodama H, Fujisawa C (2009) Copper metabolism and inherited copper transport disorders: molecular mechanisms, screening, and treatment. Metallomics 1:42

    Article  CAS  Google Scholar 

  20. Kodama H, Murata Y, Kobayashi M (1999) Clinical manifestations and treatment of Menkes disease and its variants. Pediatr Int 41:423

    Article  PubMed  CAS  Google Scholar 

  21. Crisponi G, Remelli M (2008) Iron chelating agents for the treatment of iron overload. Coord Chem Rev 252:1225

    Article  CAS  Google Scholar 

  22. Crichton RR (2008) Biological inorganic chemistry, chapter 7, Metal assimilation pathways. Elsevier Science, Amsterdam, pp 117–129

    Google Scholar 

  23. Bogdanova AY, Gassmann M, Nikinmaa K (2002) Copper ion redox state is critical for its effects on ion transport pathways and methaemoglobin formation in trout erythrocytes. Chem Biol Interact 139:43

    Article  PubMed  CAS  Google Scholar 

  24. Osterberg R (1980) Therapeutic uses of copper-chelating agents. CIBA Found Symp 79:283

    PubMed  CAS  Google Scholar 

  25. Musci G, Polticelli F, Calabrese L (1999) Structure, function relationships in ceruloplasmin. Copper transport and its disorders. Adv Exp Med Biol 448:175–182

    Article  PubMed  CAS  Google Scholar 

  26. Kato S, Sumi-Akamuru H, Fujimura H, Sakoda S, Kato M, Hirano A, Takikawa M, Ohama E (2001) Copper chaperone for superoxide dismutase co-aggregates with SOD1 in neuronal Lewy body-like hyaline inclusions: an immunohistochemical study on familial amyotrophic lateral sclerosis with SOD1 gene mutation. Acta Neuropathol 102:233

    PubMed  CAS  Google Scholar 

  27. Linder MC, Hazeg-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S

    PubMed  CAS  Google Scholar 

  28. Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem 284:717

    Article  PubMed  CAS  Google Scholar 

  29. Lane TF, Iruela-Arispe ML, Johnson RS, Sage EH (1994) SPARC is a source of copper-binding peptides that stimulate angiogenesis. J Cell Biol 125:929–943

    Article  PubMed  CAS  Google Scholar 

  30. Models OR (1974) for copper protein interaction based on solution and crystal structure studies. Coord Chem Rev 12:309–347

    Article  Google Scholar 

  31. Linder MC (1991) The biochemistry of copper. New York, Plenum

    Google Scholar 

  32. Hart EB, Steenbock J, Waddell J, Elvehjem CA (1928) Iron in nutrition. Copper as a supplement to iron for hemoglobin bilding in the rat. J Biol Chem 77:797–81

    Google Scholar 

  33. Sturgeon P, Brubaker C (1956) Copper deficiency in infants. Am J Dis Child 92:254–265

    CAS  Google Scholar 

  34. Cordano A, Baertl J, Graham JJ (1964) Copper deficiency in infants. Pediatrics 34:324–336

    PubMed  CAS  Google Scholar 

  35. al-Rashid RA, Spangler J (1971) Neonatal copper deficiency. N Engl J Med 285:841–843

    Article  PubMed  CAS  Google Scholar 

  36. Marsh MN, Riley SA (1998) Digestion and absorption of nutrients and vitamins, chapter 87. In: Feldman M, Sleisenger MH, Scharschmidt BF (eds) Sleisenger and Fordtran’s gastrointestinal and liver disease. WB Saunders Co., Philadelphia, PA, pp 1471–1500

    Google Scholar 

  37. Lonnerdal B (1998) Copper nutrition during infancy and childhood. Am J Clin Nutr 67(Suppl):1046S–1053S

    PubMed  CAS  Google Scholar 

  38. World Health Organization (1993) Guidelines for drinking water quality, vol 1. Recommendations. World Health Organization, Geneva

    Google Scholar 

  39. Delves HT (1980) Dietary sources of copper. In: Biological roles of copper, Ciba Foundation Symposium 79, Excerpta Medica, pp 5–22

    Google Scholar 

  40. Picciano MF, Guthrie HA (1976) Copper, iron and zinc contents of mature human milk. Am J Clin Nutr 29:242–254

    PubMed  CAS  Google Scholar 

  41. Vuori E, Kuitunen P (1979) The concentration of copper and zinc in human milk. Acta Pediatr Scand 68:33–37

    Article  CAS  Google Scholar 

  42. Krachler M, Shi F, Rossipal E, Irgolic KJ (1998) Changes in the concentration of trace elements in human milk during lactation. J Trace Elements Med Biol 12:159–176

    Article  CAS  Google Scholar 

  43. Vuori E (1979) Intake of copper, zinc, and manganese by healthy exclusively-breast-fed infants during the firsy three months of life. Br J Nutr 42:407–411

    Article  PubMed  CAS  Google Scholar 

  44. Griscon NT, Craigh JN, Neuhauser EBD (1971) Systemic bone disease developing in small premature infants. Pediatrics 48:883–895

    Google Scholar 

  45. Yuen P, Lin HJ, Hutchinson JH (1979) Copper deficiency in a low birth weight infant. Arch Dis Child 54:553–555

    Article  PubMed  CAS  Google Scholar 

  46. Rodriguez A, Soto G, Torres S, Venegas G, Castillo-Duran C (1985) Zinc and copper in hair and plasma of children with chronic diarrhea. Acta Paediatr Scand 74:770–774

    Article  PubMed  CAS  Google Scholar 

  47. Graham GG, Cordano A (1969) Copper depletion and deficiency in the malnourished infant. John Hopkins Med J 124:139–150

    CAS  Google Scholar 

  48. Madsen E, Gitlin JD (2007) Copper deficiency. Curr Opin Gastroenterol 23:187–192

    Article  PubMed  CAS  Google Scholar 

  49. Johnson PE, Milne DB, Lykken GI (1992) Effects of age and sex on copper absorption, biological half-life, and status in humans. Am J Clin Nutr 56:917–925

    PubMed  CAS  Google Scholar 

  50. Mendelsohn BA, Yin C, Johnson SL, Wilm TP, Solnica-Krezel L, Gitlin JD (2006) Atp7a determines a hierarchy of copper metabolism essential for notochord development. Cell Metab 4:155–162

    Article  PubMed  CAS  Google Scholar 

  51. Johson PE, Milne DB, Lykken GI (1992) Effects of age and sex on copper absorption, biological half-life, and status in humans. Am J Clin Nutr 56:917–925

    Google Scholar 

  52. Carruthers ME, Hobbs CB, Warren RL (1966) Raised serum copper and ceruloplasmin levels in subjects taking oral contraceptives. J Clin Pathol 19:498–501

    Article  PubMed  CAS  Google Scholar 

  53. Turnlund JR, Keyes WR, Anderson HL, Acord LL (1989) Copper absorption and retention in young men at three levels of dietary copper by the use of the stable isotope 65Cu. Am J Clin Nutr 49:870–878

    PubMed  CAS  Google Scholar 

  54. Wapnir RA (1998) Copper absorption and bioavailability. Am J Clin Nutr 67(Suppl):1054–1060

    Google Scholar 

  55. Ledoux DR, Pott EB, Henry PR, Ammerman CB, Merritt AM, Madison JB (1995) Estimation of the relative bioavailability of inorganic copper sources for sheep. Nutr Res 15:1803–1813

    Article  CAS  Google Scholar 

  56. Ledoux DR, Henry PR, Ammerman CB, Rao PV, Miles RD (1991) Estimation of the relative bioavailability of inorganic copper sources for chicks using tissue uptake of copper. J Anim Sci 69:215–222

    PubMed  CAS  Google Scholar 

  57. Clydesdale FM (1988) Minerals: their chemistry and fate in food. Dekker, New York, pp 57–94

    Google Scholar 

  58. Gollan JL (1975) Studies on the nature of complexes formed by copper with human alimentary secretions and their influence on copper absorption. Clin Sci Mol Med 49:237–245

    PubMed  CAS  Google Scholar 

  59. Shah BG (1981) Chelating agents and bioavailability of minerals. Nutr Res 1:617–622

    Article  CAS  Google Scholar 

  60. Van Reen R (1953) Effects of excessive dietary zinc in the rat and the interrelationship with copper. Arch Biochem Biophys 46:337–344

    Article  Google Scholar 

  61. Gregor JL, Snedeker SM (1980) Effect of dietary protein and phosphorus levels on the utilization of zinc, copper and manganese by adult males. J Nutr 110:2243–2253

    Google Scholar 

  62. Hoffman HN, Phyliki RL, Fleming CR (1988) Zinc-induced copper deficiency. Gastroenetrology 94:508–512

    Google Scholar 

  63. Bremner I (1980) Absorption, transport and distribution of copper. In: Biological roles of copper, Ciba Foundation Symposium 79, Excerpta Medica, pp 23–48

    Google Scholar 

  64. Lee J, Pena MM, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387

    Article  PubMed  CAS  Google Scholar 

  65. Sharp PA (2003) Ctr1 and its role in body copper homeostasis. Int J Biochem Cell Biol 35:288–291

    Article  PubMed  CAS  Google Scholar 

  66. Maryon EB, Molloy SA, Zimmicka AM, Kaplan JH (2007) Copper entry into human cells: progress and unanswered questions. Biometals 20:355–364

    Article  PubMed  CAS  Google Scholar 

  67. Eisses JF, Chi Y, Kaplan JH (2005) Stable plasma membrane levels of hCtr1 mediate cellular copper uptake. J Biol Chem 280:9635–9639

    Article  PubMed  CAS  Google Scholar 

  68. Aller SG, Unger VM (2006) Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci USA 103:3627

    Article  PubMed  CAS  Google Scholar 

  69. Boal AK, Rosenzweig AC (2009) Structural biology of copper trafficking. Chem Rev 109:4760–4779

    Article  PubMed  CAS  Google Scholar 

  70. Nose Y, Kim BE, Thiele DJ (2006) Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab 4:235–244

    Article  PubMed  CAS  Google Scholar 

  71. Zimnicka AM, Maryon FB, Kaplan JH (2007) Human copper transporter hCTR1 mediates basolateral uptake of copper into enterocytes: implications for copper homeostasis. J Biol Chem 7:26471–26480

    Article  CAS  Google Scholar 

  72. Kuo YM, Gybina AA, Pyatskowit JW, Gitschier J, Prohaska JR (2006) Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr 136:21–26

    PubMed  CAS  Google Scholar 

  73. Nadella SR, Grosell M, Wood CM (2007) Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine. J Comp Physiol 177:433–446

    CAS  Google Scholar 

  74. Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci USA 98:6842–6847

    Article  PubMed  CAS  Google Scholar 

  75. Arredondo M, Munoz P, Nùnez MT (2003) DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol Cell Physiol 284:C1525–C1530

    PubMed  CAS  Google Scholar 

  76. Han O, Wessling-Resnick M (2002) Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 282:G527–G533

    PubMed  CAS  Google Scholar 

  77. Wapnir RA, Devas G, Solans CV (1993) Inhibition of intestinal copper absorption by divalent cations and low molecular weight ligands in the rat. Biol Trace Elem Res 36:291–305

    Article  CAS  Google Scholar 

  78. Yu S, West CE, Beynen AC (1994) Increasing intakes of iron reduce status, absorption and biliary excretion of copper in rats. Br J Nutr 71:887–895

    Article  PubMed  CAS  Google Scholar 

  79. Tennant J, Stansfield M, Yamaji S, Srai SK, Sharp P (2002) Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. FEBS Lett 11:239–244

    Article  Google Scholar 

  80. Kagi JHR, Vallee BL (1960) Metallothionein: a cadmium and zinc-containing protein from equine renal cortex. J Biol Chem 235:3460–3467

    PubMed  CAS  Google Scholar 

  81. Sturniolo GC, Mestriner C, Irato P, Albergoni V, Longo G, D’Incà R (1999) Zinc therapy increases duodenal concentrations of metallothionein and iron in Wilson’s disease patients. Am J Gastroenterol 94:334–338

    Article  PubMed  CAS  Google Scholar 

  82. Hall AC, Young BW, Bremner I (1979) Intestinal metallothionein and the mutual antagonism between copper and zinc in the rat. J Inorg Biochem 11:57–66

    Article  PubMed  CAS  Google Scholar 

  83. Cousins RJ (1979) Synthesis and degradation of liver metallothionein. In: Kagi JHR, Nordberg M (eds) Metallothionein. Birkhauser, Basel, pp 273–280

    Google Scholar 

  84. Botash AS, Nasca J, Dubowy R, Weenberger HL, Oliphant M (1992) Zinc-induced copper deficiency in an infant. Am Dis Child 164:709–711

    Google Scholar 

  85. Lonnerdal B (2008) Intestinal regulation of copper homeostasis: a developmental approach. Am J Clin Nutr 88:846S–850S

    PubMed  CAS  Google Scholar 

  86. Field LS, Luk E, Culotta VC (2002) Copper chaperones: personal escorts for metal ions. J Bioenerg Biomembr 34:373–379

    Article  PubMed  CAS  Google Scholar 

  87. Bankier A (1995) Menkes disease. J Med Genet 32:213–215

    Article  PubMed  CAS  Google Scholar 

  88. Mercer JFB (1998) Menkes syndrome and animal models. Am J Clin Nutr 67(suppl):1022S–1028S

    PubMed  CAS  Google Scholar 

  89. Nyasae L, Bustos R, Braiterman L, Eipper B, Hubbard A (2007) Dynamics of endogenous ATP7A (Menkes protein) in intestinal epithelial cells: copper-dependent redistribution between two intracellular sites. Am J Physiol Gastrointest Liver Physiol 292:G1181–G1194

    Article  PubMed  CAS  Google Scholar 

  90. Ravia JJ, Stephen RM, Ghishan FK, Collins JF (2005) Menkes copper ATPase (Atp7a) is a novel metal-responsive gene in rat duodenum, and immunoreactive protein is present on brush-border and basolateral membrane domains. J Biol Chem 280:36221–36227

    Article  PubMed  CAS  Google Scholar 

  91. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3:7–13

    Article  PubMed  CAS  Google Scholar 

  92. Solioz M, Odermatt A, Krapf R (1994) Copper pumping ATPases: common concepts in bacteria and in man. FEBS Lett 346:44–47

    Article  PubMed  CAS  Google Scholar 

  93. Monty JF, Llanos RM, Mercer JF, Kramer DR (2005) Copper exposure induces trafficking of the menkes protein in intestinal epithelium of ATP7A transgenic mouse. J Nutr 135:2762–2766

    PubMed  CAS  Google Scholar 

  94. Linder MC, Weiss KC, Vu HM, Rucker RB (1987) Structure and function of transcuprein in transport of copper by mammalian blood plasma. In: Hurley LC, Lonnerdal B, Keen C (eds) Trace elements in man and animals. Plenum, New York, pp 141–144

    Google Scholar 

  95. Linder MC, Wooten L, Cerveza P (1998) Copper transport. Am J Clin Nutr 67(suppl):965S–971S

    PubMed  CAS  Google Scholar 

  96. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  97. Breslow E (1964) Comparison of cupric ion-binding site in myoglobin derivatives and serum albumin. J Biol Chem 239:3252–3259

    PubMed  CAS  Google Scholar 

  98. Reed RG, Burrington CM (1989) The albumin receptor effect may be due to a surface-induced conformational change in albumin. J Biol Chem 264:9867–9872

    PubMed  CAS  Google Scholar 

  99. Bal W, Christodoulou J, Sadler PJ, Tucker A (1998) Multi-metal binding site of serum albumin. J Inorg Biochem 70:33–39

    Article  PubMed  CAS  Google Scholar 

  100. Lovstad RA (2002) A kinetic study on the copper-albumin catalyzed oxidation of ascorbate. Biometals 15:351–355

    Article  PubMed  CAS  Google Scholar 

  101. Laussac JP, Sarkar B (1984) Characterization of the copper(II) and nickel(II)-transport site of human serum albumin. Studies of copper(II) and nickel(II) binding to peptide 1-24 of human serum albumin by 13C and 1H NMR spectroscopy. Biochemistry 23:2832–2838

    Article  PubMed  CAS  Google Scholar 

  102. Linder MC, Lomeli NA, Donley S, Mehrbod F, Cerveza P, Cotton S, Wooten L (1999) Copper transport in mammals. In: Leone A, Mercer JMC (eds) Copper transport and its disorders. Kluwer/Plenum, New York, pp 1–16

    Chapter  Google Scholar 

  103. Gryzumov YA, Arroyo A, Vigne JL, Zhao Q, Tyurin VA, Hubel CA, Gandley RE, Vladimirov YA, Taylor RN, Kagan VE (2003) Binding with fatty acids facilitates oxidation of cysteine-34 and converts copper-albumin complexes from antioxidants to prooxidants. Arch Biochem Biophys 413:53–56

    Article  CAS  Google Scholar 

  104. Vargas EJ, Shoho AR, Linder MC (1994) Copper transport in the Nagase analbuminemic rat. Am J Physiol 267:G259–G269

    PubMed  CAS  Google Scholar 

  105. Scheimberg IH, Sternlieb I (1984) Wilson’s disease. In: Smith LH (ed) Major problems in internal medicine. WB Saunders Co., Philadelphia

    Google Scholar 

  106. Roche-Sicot J, Benhamou JP (1977) Acute intravascular hemolysis and acute liver failure as a first manifestation of Wilson’s disease. Ann Intern Med 86:301–303

    PubMed  CAS  Google Scholar 

  107. Lau SY, Kruck TPA, Sarker B (1974) Peptide molecule mimicking the copper (II) transport site of human erum albumin. J Biol Chem 246:5878–5884

    Google Scholar 

  108. Lovstad RA (2004) A kinetic study on the distribution of Cu(II)-ions between albumin and transferrin. Biometals 17:111–113

    Article  PubMed  CAS  Google Scholar 

  109. Weiss KC, Linder MC (1985) Copper transport in rats involving a new plasma protein. Am J Physiol 249:E77–E88

    PubMed  CAS  Google Scholar 

  110. Wirth PL, Linder MC (1985) Distribution of copper among components of human serum. J Natl Cancer Inst 75:277–284

    PubMed  CAS  Google Scholar 

  111. Zaitseva I, Zaitsev V, Card G, Moshkov K, Box B, Ralph A, Lindley P (1996) The nature of the copper celtres in human ceruloplasmin. J Biol Inorg Chem 1:15–23

    Article  CAS  Google Scholar 

  112. Alda JO, Garay R (1990) Chloride (or bicarbonate)-dependent copper uptake through the anion exchanger in human red blood cells. Am J Physiol 259:C570–C576

    PubMed  CAS  Google Scholar 

  113. Bogdanova AY, Virkki LV, Gusev M, Nikinmaa M (1999) Copper effects on ion transport across lamprey erythrocyte membrane: Cl(-)/OH(-) exchange induced by cuprous ions. Toxicol Appl Pharmacol 159:204–213

    Article  PubMed  CAS  Google Scholar 

  114. McArdle HJ, Bingham MJ, Summer K, Ong TJ (1999) Cu metabolism in the liver. In: Leone A, Mercer JFB (eds) Copper transport and its disorders. Kluwer/Plenum, New York, pp 29–37

    Chapter  Google Scholar 

  115. Van den Berg GJ, McArdle HJ (1994) A plasma membrane NADH oxidase is involved in copper uptake by plasma membrane vesicles isolated from rat liver. Biochim Biophys Acta 1195:276–280

    Article  PubMed  Google Scholar 

  116. Bingham MJ, McArdle HJ (1994) A comparison of copper uptake by liver plasma membrane vesicles and uptake by isolated cultured hepatocytes. Hepatology 20:1024–1031

    Article  PubMed  CAS  Google Scholar 

  117. Whitaker P, McArdle HJ (1997) Iron inhibits copper uptake by down-regulating the plasma membrane NADH oxidase. Trace Elem Man Anim 9:237–239

    Google Scholar 

  118. Lutsenko S, Bhattacharjee A, Hubbard AL (2010) Copper handling machinery of the brain. Metallomics 2:596–608

    Article  PubMed  CAS  Google Scholar 

  119. Slama P, Boucher JL, Règlier M (2009) N-hydroxyguanidines oxidation by N3S copper complex mimicking the reactivity of dopamine beta-hydroxylase. J Inorg Biochem 103:455–462

    Article  PubMed  CAS  Google Scholar 

  120. Donsante A, Zerfas PM, Brinster LR, Sullivan P, Goldstein DS, Prohaska J, Centeno JA, Rushing E, Kaler SG (2011) ATP7A addition to the choroid plexus results in long-term rescue of the lethal copper transport defect in Menkes disease. Mol Ther 19(12):2114–2123. doi:10.1038/mt.2011.143

    Article  PubMed  CAS  Google Scholar 

  121. Brown DR, Kozlowski H (2004) Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans 1907–1917

    Google Scholar 

  122. Rola R, Zou Y, Huang TT, Fishman K, Baure J, Rosi S, Milliken H, Limoli CL, Fike JR (2007) Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radic Biol Med 42:1133–1145

    Article  PubMed  CAS  Google Scholar 

  123. Li PA, He Q, Cao T, Yong G, Szauter KM, Fong KS, Karlsson J, Keep MF, Csiszar K (2004) Up-regulation and altered distribution of lysyul oxidase in the central nervous system of mutant SOD1 transgenic mouse model of amyoprophic lateral sclerosis. Mol Brain Res 120:115–122

    Article  PubMed  CAS  Google Scholar 

  124. Bronson NW, Hamilton JS, Han M, Li PA, Hornstra I, Horowitz JM, Horwitz A (2005) LOXL null mice demonstrate selective dentate structural changes but maintain dentate granule cell and CA1 pyramidal cell potentiation in the hippocampus. Neurosci Lett 390:118–122

    Article  PubMed  CAS  Google Scholar 

  125. Chioza BA, Ujfalusi A, Csiszar K, Leigh PN, Powell JF, Radunovic A (2001) Mutations in the lysyl oxidase gene are not associated with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2:93–97

    Article  PubMed  CAS  Google Scholar 

  126. Harris ZL, Durley AP, Man TK, Gitlin JD (1999) Targeted gene disruption reveals an essential role for eruloplasmin in cellular iron efflux. Proc Natl Acad Sci USA 96:10812–10817

    Article  PubMed  CAS  Google Scholar 

  127. Martin F, Linden T, Katskinski DM, Oehme F, Flamme I, Mukhopadhyay CK, Eckardt K, Troger J, arth S, Camenisch G, Wenger RH (2005) Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105:4613–4619

    Article  PubMed  CAS  Google Scholar 

  128. Healy J, Tipton K (2007) Ceruloplasmin and what it might to do. J Neural Transm 114:777–781

    Article  PubMed  CAS  Google Scholar 

  129. Mehta R, Templeton DM, O’brien PJ (2006) Mitochondrial involvement in genetically determined transition metal toxicity II. Copper toxicity. Chem Biol Interact 163:77–85

    Article  PubMed  CAS  Google Scholar 

  130. Bingham MJ, Sargeson AM, McArdle HG (1997) Identification and characterization of intracellular copper pools in rat hepatocytes. Am J Physiol 272:G1400–G1407

    PubMed  CAS  Google Scholar 

  131. Wang T, Weinman SA (2004) Involvement of chloride channels in hepatic copper metabolism: CIC-4 promotes copper incorporation into ceruloplasmin. Gastroenterology 126:1157–1166

    Article  PubMed  CAS  Google Scholar 

  132. Meyer LA, Durley AP, Prohaska JR, Harris ZL (2001) Copper transport and metabolism are normal in aceruloplasminemic mice. J Biol Chem 276:36857–36861

    Article  PubMed  CAS  Google Scholar 

  133. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  PubMed  CAS  Google Scholar 

  134. Crichton RR (2007) Biol Inorg Chem

    Google Scholar 

  135. Choi B-S, Zheng W (2009) Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res 1248:14–21

    Article  PubMed  CAS  Google Scholar 

  136. Lee KH, Yun SJ, Nam KN, Gho YS, Lee EH (2007) Activation of microglial cells by ceruloplasmin. Brain Res 1171:1–8

    Article  PubMed  CAS  Google Scholar 

  137. Mzhelskaya TI (2000) Biological functions of ceruloplasmin and their deficiency caused by mutation in genes regulating copper and iron metabolism. Bull Exp Biol Med 130:719–727

    CAS  Google Scholar 

  138. Miyajima H, Kono S, Takahashi Y, Sugimoto M, Sakamoto M, Sakai N (2006) Cerebellar ataxia associated with heteroallelic ceruloplasmin gene mutation. Neurology 57:2205–2210

    Article  Google Scholar 

  139. Jeong SY, David S (2006) Age-related changes in iron homeostasis and cell death in the cerebellum of ceruloplasmin-deficient mice. J Neurosci 26:9810–9819

    Article  PubMed  CAS  Google Scholar 

  140. Bihoreau N, Pin S, Kersabiec AM, Vidot F, Fontaine-Aupart MP (1994) Copper-atom identification in the active and inactive forms of plasma-derived FVIII and recombinant FVIII-delta II. Eur J Biochem 222:41–48

    Article  PubMed  CAS  Google Scholar 

  141. Sudhakar K, Fay PJ (1998) Effects of copper on the structure and function of factor VIII subunits: evidence for an auxiliary role for copper ions in cofactor activity. Biochemistry 37:6874–6882

    Article  PubMed  CAS  Google Scholar 

  142. Fay PG (2006) Factor VIII structure and function. Int J Hematol 83:103–108

    Article  PubMed  CAS  Google Scholar 

  143. Choi CJ, Kanthasamy A, Anantharam V, Kanthasamy AG (2006) Interaction of metals with prion protein: possible role of divalent cations in the pathogenesis of prion disease. Neurotoxicology 27:777–787

    Article  PubMed  CAS  Google Scholar 

  144. Wong BS, Brown DR, Pan T, Whiteman M, Liu T, Bu X, Li R, Gambetti P, Olesik J, Rubenstein R, Sy MS (2001) Oxidative impairment in scrapie-infected mice is associated with brain metals perturbations and altered antioxidant activities. J Neurochem 79:689–698

    Article  PubMed  CAS  Google Scholar 

  145. Waggoner D, Bartnikas TB, Gitlin J (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  PubMed  CAS  Google Scholar 

  146. Singh N, Das D, Singh A, Mohan ML (2010) Prion protein and metal interaction: physiological and pathological implications. Curr Issues Mol Biol 12:99–107

    PubMed  CAS  Google Scholar 

  147. Singh N, Singh A, Das D, Mohan ML (2010) Redox control of prion and disease pathogenesis. Antioxid Redox Signal 12:1271–1294

    Article  PubMed  CAS  Google Scholar 

  148. Bayer TA, Cappai R, Masters CL, Beyreuther K, Multhaup G (1999) It all sticks together–the APP-related family of proteins and Alzheimer’s disease. Mol Psychiatry 4:524–531

    Article  PubMed  CAS  Google Scholar 

  149. Multhaup G, Bush AI, Pollwein P, Masters CL (1994) Interaction between the zinc (II) and the heparin binding site of the Alzheimer’s disease beta A4 amyloid precursor protein (APP). FEBS Lett 355:151–154

    Article  PubMed  CAS  Google Scholar 

  150. Hesse L, Beher D, Masters CL, Multhaup G (1994) The beta A4 amyloid precursor protein binding to copper. FEBS Lett 349:109–116

    Article  PubMed  CAS  Google Scholar 

  151. Multhaup G, Schlicksupp A, Hesse L, Beher T, Ruppert T, Masters CL, Beyreuther K (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271:1406–1409

    Article  PubMed  CAS  Google Scholar 

  152. White AR, Reyes R, Mercer JF, Camakaris J, Zheng H, Bush AI, Multhaup G, Beyreuther K, Masters CL, Cappai R (1999) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res 842:439–444

    Article  PubMed  CAS  Google Scholar 

  153. Kodama H, Sato E, Gu YH, Shiga K, Fujisawa C, Kozuma T (2005) Effect of copper and diethylthiocarbamate combination therapy on the macular mouse, an animal model of Menkes disease. J Inherit Metab Dis 28:971–978

    Article  PubMed  CAS  Google Scholar 

  154. Forte G, Bocca B, Senofonte O, Petrucci F, Brusa L, Stanzione P, Zannino S, Violante N, Alimonti A, Sancesario G (2004) Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J Neural Transm 111:1031–1040

    Article  PubMed  CAS  Google Scholar 

  155. Van Den Berg GJ, de Goeij JJ, Bock I, Gijbels MJ, Brouwer A, Lei KY, Hendriks HF (1991) Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats. J Nutr 121:1228–1235

    PubMed  Google Scholar 

  156. Petris MJ (2004) The SLC31 (Ctr) copper transport family. Pflugers Arch Eur J Physiol 447:796–800

    Article  CAS  Google Scholar 

  157. Eisses JF, Kaplan JH (2002) Molecular characterization of hCTR1, the human copper uptake protein. J Biol Chem 277:29162–29171

    Article  PubMed  CAS  Google Scholar 

  158. Rees EM, Thiele DJ (2007) Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization. J Biol Chem 282:21629–21638

    Article  PubMed  CAS  Google Scholar 

  159. Xiao Z, Loughlin F, George GN, Howlett GJ, Wedd AG (2004) C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: subfentomolar Cu(I) affinity of three proteins involved in copper trafficking. J Am Chem Soc 126:3081–3090

    Article  PubMed  CAS  Google Scholar 

  160. Guo Y, Smith K, Lee J, Thiele DJ, Petris MJ (2004) Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. J Biol Chem 279:17428–17433

    Article  PubMed  CAS  Google Scholar 

  161. Liu J, Sitaram A, Burd CG (2007) Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase. Traffic 8:1375–1384

    Article  PubMed  CAS  Google Scholar 

  162. Mackenzie NC, Brito M, Reyes AE, Allende ML (2004) Cloning, expression pattern and essentiality of the igh-affinity copper transporter 1 (ctr1) gene in zebrafish. Gene 328:113–120

    Article  PubMed  CAS  Google Scholar 

  163. Platonova NA, Barabanova SA, Povalikhin RG, Tsymbalenko NV, Nodzdrachev AD, Puchkova LV (2005) Expression of Menkes AtPase and Wilson ATPpase in different regions of the adult rat brain. Dokl Biol Sci 401:88–91

    Article  PubMed  CAS  Google Scholar 

  164. Sinani D, Adle DJ, Kim H, Lee J (2007) Distinct mechanisms for Ctr1-mediated copper and cisplatin transport. J Biol Chem 282:26775–26785

    Article  PubMed  CAS  Google Scholar 

  165. Holzer AK, Manorek GH, Howell SB (2006) Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol Pharmacol 70:1390–1394

    Article  PubMed  CAS  Google Scholar 

  166. Kuo YM, Zhou B, Cosco D, Gitschier J (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci USA 98:6836–6841

    Article  PubMed  CAS  Google Scholar 

  167. Zhou B, Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. PNAS 94:7481–7486

    Article  PubMed  CAS  Google Scholar 

  168. Rees EM, Lee J, Thiele DJ (2004) Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter. J Biol Chem 279:54221–54229

    Article  PubMed  CAS  Google Scholar 

  169. van den Berghe PV, Folmer DE, Malingré HE, van Beurden E, Klomp AE, van den Sluis B, Merkx M, Berger R, Klomp LW (2007) Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem J 407:49–59

    Article  PubMed  Google Scholar 

  170. Tanchou V, Gas F, Urvoas A, Cougouluegne F, Ruat S, Averseng O, Quemeneur E (2004) Copper-mediated homo-dimerisation for the HAH1 metallochaperone. Biochem Biophys Res Commun 325:388–394

    Article  PubMed  CAS  Google Scholar 

  171. Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD (2001) The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. PNAS 98:6848–6852

    Article  PubMed  CAS  Google Scholar 

  172. Rodriguez-Granillo A, Wittung-Stafshede P (2009) Differential roles of Met10, Thr11, and Lys60 in structural dynamics of human copper chaperone Atox1. Biochemistry 48:960–972

    Article  PubMed  CAS  Google Scholar 

  173. Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959

    Article  PubMed  CAS  Google Scholar 

  174. Naeve GS, Vana AM, Eggold JR, Kelner GS, Maki R, Desouza EB, Foster AC (1999) Expression profile of the copper homeostasis gene, rAtox1, in the rat brain. Neuroscience 93:1179–1187

    Article  PubMed  CAS  Google Scholar 

  175. Hussain F, Rodriguez-Granillo A, Wittung-Stafshede P (2009) Lysine-60 in copper chaperone Atox1 plays an essential role in adduct formation with a target Wilson disease domain. J Am Chem Soc 131:16371–16373

    Article  PubMed  CAS  Google Scholar 

  176. Hamza I, Prohaska J, Gitlin JD (2003) Essential role for Atox1 in the copper-mediated intracellular rafficking of the Menkes ATPase. Proc Natl Acad Sci USA 100:1215–1220

    Article  PubMed  CAS  Google Scholar 

  177. McRae R, Lai B, Fahrni CJ (2010) Copper redistribution in Atox1-deficient mouse fibroblast cells. J Biol Inorg Chem 15:99–105

    Article  PubMed  CAS  Google Scholar 

  178. Kelner GS, Lee M, Clark ME, Maciejewski D, McGrath D, Rabizadeh S, Lyons T, Bredesen D, Jenner P, Maki RA (2000) The copper transport protein Atox1 promotes neuronal survival. J Biol Chem 275:580–584

    Article  PubMed  CAS  Google Scholar 

  179. Itoh S, Kim HW, Nakagawa O, Ozumi S, Lessner SM, Aoki H, Akram K, McKinney RD, Ushio-Fukai M, Fukai T (2008) Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem 283:9157–9167

    Article  PubMed  CAS  Google Scholar 

  180. Banci L, Bertini I, Ciofi-Baffoni S, Janicka A, Martinelli M, Kozlowski H, Palumaa P (2008) A structural-dynamical characterization of human Cox17. J Biol Chem 283:7912–7920

    Article  PubMed  CAS  Google Scholar 

  181. Leary SC, Cobine PA, Kaufman BA, Guercin GH, Mattman A, Palaty J, Lockitch G, Winge DR, Rustin P, Horvath R, Shoubridge EA (2007) The human cytochrome c oxidase assembly factors SCO1 And SCO2 have regulatory roles in the maintenance of cellular copper homeostasis. Cell Metab 5:9–20

    Article  PubMed  CAS  Google Scholar 

  182. Briere JJ, Tzagoloff A (2007) The scoop on sco. Mol Cell 25:176–178

    Article  PubMed  CAS  Google Scholar 

  183. Mobley BC, Enns GM, Wong LJ, Vogel H (2009) A novel homozygous SCO2 mutation, p.G193S, causing fatal infantile cardioencephalomyopathy. Clin Neuropathol 28:143–149

    PubMed  CAS  Google Scholar 

  184. Schmidt PJ, Kunst C, Culotta VC (2000) Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. J Biol Chem 275:33771–33776

    Article  PubMed  CAS  Google Scholar 

  185. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  PubMed  CAS  Google Scholar 

  186. Caruano-Yzermans AL, Bartnikas TB, Gitlin JD (2006) Mechanisms of the copper-dependent turnover of the copper chaperone for superoxide dismutase. J Biol Chem 281:13581–13587

    Article  PubMed  CAS  Google Scholar 

  187. Carroll MC, Girouard JB, Ulloa JL, Subramanian JR, Wong PC, Valentine JS, Culotta VC (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci USA 101:5964–5969

    Article  PubMed  CAS  Google Scholar 

  188. Mullins JE, Fuentalba IC (1998) Immunohistochemical detection of metallothionein in liver, duodenum and kidney after dietary copper-overload in rats. Histol Histopathol 13:627–633

    PubMed  CAS  Google Scholar 

  189. Shishido N, Nakayama K, Takazawa A, Ohyama T, Nakamura M (2001) Cu-metallothioneins (Cu(I)8-MTs) in EC rat livers 13 weeks after birth still act as antioxidants. Arch Biochem Biophys 387:216–222

    Article  PubMed  CAS  Google Scholar 

  190. Fabisiak JP, Tyurin VA, Tyurina YY, Borisenko GG, Korotaeva A, Pitt BR, Lazo JS, Kagan VE (1999) Redox regulation of copper-metallothionein. Arch Biochem Biophys 363:171–181

    Article  PubMed  CAS  Google Scholar 

  191. Fuentalba IC, Aburto EM (2003) Animal models of copper-associated liver disease. Comp Hepatol 2:1–12

    Article  Google Scholar 

  192. Wijmenga C, Klomp LW (2004) Molecular regulation of copper excretion in the liver. Proc Nutr Soc 63:31–39

    Article  PubMed  CAS  Google Scholar 

  193. Burstein E, Ganesh L, Dick RD, van De Sluis B, Wilkinson JC, Klomp WJ, Cisca W, Brewer GJ, Nabel GJ, Duckett CS (2004) A novel role for XIAP in coper homeostasis through regulation of MURR1. EMBO J 23:244–254

    Article  PubMed  CAS  Google Scholar 

  194. Wang Y, Joh K, Masuko S, Yatsuki H, Soejima H, Nabetani A, Beechey CV, Okinami S, Mukai T (2004) The mouse Murr1 gene is imprinted in the adult brain, presumably due to transcriptional interference by the antisense-oriented U2af1-rs1 gene. Mol Cell Biol 24:270–279

    Article  PubMed  CAS  Google Scholar 

  195. Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87:1011–1046

    Article  PubMed  CAS  Google Scholar 

  196. La Fontaine S, Mercer JF (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 463:149–167

    Article  PubMed  CAS  Google Scholar 

  197. Roelofsen H, Wolters H, Van Luyn MJ, Miura N, Kuipers F, Vonk RJ (2000) Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 119:782–793

    Article  PubMed  CAS  Google Scholar 

  198. Yanagimoto C, Harada M, Kumemura H, Koga H, Kawaguchi T, Terada K, Hanada S, Taniguchi E, Koizumi Y, Koyota S, Ninomiya H, Ueno T, Sugiyama T, Sata M (2009) Niemann-Pick C1 protein transports copper to the secretory compartment from late endosomes where ATP7B resides. Exp Cell Res 315:119–126

    Article  PubMed  CAS  Google Scholar 

  199. Cater MA, La Fontaine S, Shield K, Deal Y, Mercer JF (2006) ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion. Gastroenterology 130:493–506

    Article  PubMed  CAS  Google Scholar 

  200. Bartee MY, Lutsenko S (2007) Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level. Biometals 20:627–637

    Article  PubMed  CAS  Google Scholar 

  201. Weiss KH, Carbajo Lozoya J, Tuma S, Gotthardt D, Reichert J, Ehehalt R, Stremmel W, Fullekrug J (2008) Copper-induced translocation of the Wilson Disease protein ATP7B independent of Murr1/COMMD1and Rab7. Am J Pathol 173:1783–1794

    Article  PubMed  CAS  Google Scholar 

  202. Zhang Y, Li M, Yao Q, Chen C (2009) Roles and mechanisms of copper transporting ATPases in cancer pathogenesis. Med Sci Monit 15:1–5

    Google Scholar 

  203. Bohlken A, Cheung BB, Bell JL, Koach J, Smith S, Sekyere E, Thomas W, Norris M, Haber M, Lovejoy DB, Richardson DR, Marshall GM (2009) ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells. Br J Cancer 100:96–105

    Article  PubMed  CAS  Google Scholar 

  204. de Bie P, van den Sluis B, Klomp L, Wijmenga C (2005) The many faces of the copper metabolism protein MURR1/COMMD1. J Hered 96:803–811

    Article  PubMed  CAS  Google Scholar 

  205. van Den Sluis B, Rothuizen J, Pearson PL, van Oost A, Wijmenga C (2002) Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum Mol Genet 11:165–173

    Article  Google Scholar 

  206. de Bie P, van de Sluis B, Burstein E, van den Berghe PV, Muller P, Berger R, Gitlin JD, Wijmenga C, Klomp LW (2007) Distinct Wilson’s disease mutations in ATP7B are associated with enhanced binding to COMMD1 and reduced stability of ATP7B. Gastroenterology 133:1316–1326

    Article  PubMed  CAS  Google Scholar 

  207. Tao TY, Liu F, Klomp L, Wijmenga C, Gitlin JD (2003) The copper toxicosis product Murr1 directly interacts with the Wilson disease protein. J Biol Chem 278:41593–41596

    Article  PubMed  CAS  Google Scholar 

  208. Narindrasorasak S, Kulkarni P, Deschamps P, She YM, Sarkar B (2007) Characterization and copper binding properties of human COMMD1 MERR1. Biochemistry 46:3116–3128

    Article  PubMed  CAS  Google Scholar 

  209. Lim CM, Cater MA, Mercer JF, La Fontaine S (2006) Copper-dependent interaction of glutaredoxin with the N termini of the copper-ATPases (ATP7A and ATP7B) defective in Menkes and Wilson diseases. Biochem Biophys Res Commun 348:428–436

    Article  PubMed  CAS  Google Scholar 

  210. Ke BX, Llanos RM, Wright M, Deal Y, Mercer JF (2006) Alterations of copper physiology in mice overexpressing the human Menkes protein ATP7A. Am J Physiol 290:R1460–R1467

    CAS  Google Scholar 

  211. Niciu MJ, Ma XM, El Meskini R, Ronnett GV, Mains ER, Eipper BA (2006) Developmental changes in the expression of ATP7A during a critical period in postnatal neurodevelopment. Neuroscience 139:947–964

    Article  PubMed  CAS  Google Scholar 

  212. Barnes N, Tsivkovskii R, Tsivkovskaia N, Lutsenko S (2005) The copper-transporting ATPases, Menkes and Wilson disease proteins, have distinct roles in adult and developing cerebellum. J Biol Chem 280:9640–9645

    Article  PubMed  CAS  Google Scholar 

  213. Saito T, Okabe M, Hosokawa T, Kurasaki M, Hata A, Endo F, Nagano K, Matsuda I, Urakami K, Saito K (1999) Immunohistochemical determination of the Wilson Copper-transporting P-type ATPase in the brain tissues of the rat. Neurosci Lett 266:13–16

    Article  PubMed  CAS  Google Scholar 

  214. Kitzemberg R, Madl C, Ferenci P (2005) Wilson disease. Metab Brain Dis 20:295–302

    Article  Google Scholar 

  215. Hardman B, Michalczyk A, Greenough M, Camakaris J, Mercer JF, Ackland L (2007) Distinct functional roles for the Menkes and Wilson copper translocating P-type ATPases in human placental cells. Cell Physiol Biochem 20:1073–1084

    Article  PubMed  CAS  Google Scholar 

  216. Linz R, Barnes NL, Zimnicka AM, Kaplan JH, Eipper B, Lutsenko S (2008) Intracellular targeting of copper-transporting ATPase ATP7A in a normal and Atp7b-/- kidney. Am J Physiol Renal Physiol 294:F53–F61

    Article  PubMed  CAS  Google Scholar 

  217. Moore SD, Cox DW (2002) Expression in mouse kidney of membrane copper transporters Atp7a and Atp7b. Nephron 92:629–634

    Article  PubMed  CAS  Google Scholar 

  218. Crisponi G, Ambu R, Caria MP, Lisci M, Cristiani F, Nurchi VM, Pinna R (2001) Renal copper content and distribution in Wilson’s disease. J Urol Pathol 13:23–30

    Article  Google Scholar 

  219. Rossi L, Squitti R, Calabrese L, Rotilio G, Rossini PM (2007) Alteration of peripheral markers of copper homeostasis in Alzheimer’s disease patients: implications inj aetiology and therapy. J NutrHealth Aging 11:408–417

    CAS  Google Scholar 

  220. Aschner M, Syversen T, Souza DO, Rocha JB (2006) Metallothioneins: mercury species-specific induction and their potential role in attenuating neurotoxicity. Exp Biol Med 231:1468–1473

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavino Faa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Crisponi, G., Nurchi, V.M., Gerosa, C., Fanni, D., Nemolato, S., Faa, G. (2012). Copper uptake and trafficking in the brain. In: Linert, W., Kozlowski, H. (eds) Metal Ions in Neurological Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1001-0_5

Download citation

Publish with us

Policies and ethics