Skip to main content

Particulate Matter Emissions from Metro Brakes using the Example of the Lisbon Metro

  • Conference paper
  • First Online:
XL. Internationales μ-Symposium 2023 Bremsen-Fachtagung (IµSBC 2023)

Abstract

The adverse health effects of air pollutants in general and particulate matter (PM) in particular have been demonstrated by a large number of toxicological and epidemiological studies. The Lancet Commission reported in 2018 that air pollution causes approximately 6.5 million premature deaths every year worldwide and ranks it as the fifth leading cause of death. Road traffic is considered a major source of particulate matter in urban environments. The share of exhaust emissions has continued to decline over the years due to engine improvements and the introduction of exhaust after treatment methods. In contrast, particulate emissions due to abrasion from brakes, tires, and the road surface, as well as due to resuspension have steadily increased. The reason for this, in addition to increasing traffic, is primarily the steadily growing average vehicle size and mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Dockery, A. Pope, X. Xu, J. Spengler, J. Ware, M. Fay, B. Ferris und F. Speizer, „An association between air pollution and mortality in six U.S. cities,“ The New England Journal of Medicine, Nr. 329, pp. 1753–1759, https://doi.org/10.1056/NEJM199312093292401, 1993.

    Article  Google Scholar 

  2. C. Pope III und D. Dockery, „Health effects of fine particulate air pollution: Lines that connect,“ Journal of the Air & Waste Association Management Association, Nr. 56, pp. 709–742; https://doi.org/10.1080/10473289.2006.10464485, 2006.

    Article  Google Scholar 

  3. D. Dockery, „Health Effects of Particulate Matter,“ Annals of Epidemiology, Bd. 19, pp. 257–263, https://doi.org/https://doi.org/10.1016/j.annepidem.2009.01.018, 2009.

    Article  Google Scholar 

  4. P. Landrigan, R. Fuller, N. Acosta, O. Adeyi, R. Arnold, N. Basu, A. Baldé, R. Bertollini, S. Bose-O’Reilly, J. Boufford, R. Breysse, T. Chiles, C. Mahidol, A. Coll-Seck, M. Cropper, J. Fobil und et al., „The Lancet Commission on pollution and health,“ The Lancet, Bd.  391, pp. 462–512; https://doi.org/10.1016/S0140-6736(17)32345-0, 2018.

  5. G. 2. R. F. C. „Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease study 2013,“ The Lancet, Bd. 386, pp. 2287–2323, https://doi.org/10.1016/S0140-6736(15)00128-2, 2015.

  6. F. Karagulian, B. C.A., C. Dora, A. Prüss-Ustün, S. Bonjour, H. Adair-Rohani und M. Amann, „Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level,“ Atmospheric Environment, Bd. 120, pp. 475–483, 2015.

    Google Scholar 

  7. H. van der Goon, J. Hulskotte, M. Joczwicka, R. Kranenburg, J. Kuenen und A. Visschedijk, „European emission inventories and projections for road transport non-exhaust emissions,“ in Non-Exhaust Emissions (Ed. F. Amato), Elsevier, London, 2018, pp. 101–121.

    Google Scholar 

  8. R. Harrison, A. Jones, J. Gietl, J. Yin und D. Green, „Estimation of the contributions of brake dust, tire wear and resuspension to nonexhaust traffic particles derived from atmospheric measurements,“ Environmental Science & Technology, Bd. 46, pp. 6523–6529, 2012.

    Article  Google Scholar 

  9. P. Aarnio, T. Tuomi, A. Kousa, T. Mäkelä, A. Hirsikko, K. Hämeri, M. Räisänen, R. Hillamo, T. Koskentalo und M. Jantunen, „The concentrations and composition of and exposure to fine particles PM2.5) in the Helsinki subway system,“ Atmospheric Environment, Bd. 39, pp. 5059–5066, 2005.

    Article  Google Scholar 

  10. M. Cusack, N. Talbot, J. Ondrácek, M. Minguillón, V. Martins, K. Klouda, J. Schwarz und V. Zdímal, „Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground station,“ Atmospheric Environment, Bd. 118, pp. 176–183, 2015.

    Article  Google Scholar 

  11. T. Moreno, X. Querol, V. Martins, M. Minguillón, C. Reche, L. Ku, H. Eun, K. Ahn, M. Capdevila und E. de Miguel, „Formation and alteration of airborne particles in the subway environment,“ Environmental Science – Processes & Impacts, Bd. 19, p. 59, 2017.

    Google Scholar 

  12. T. Moreno, V. Martins, X. Querol, T. Jones, K. BéruBe, M. Cruz Minguillón, F. Amato, M. Capdevila, A. de Miguel, S. Centelles und W. Gibbons, „A new look at inhalable metalliferous airborne particles on railway subway platforms,“ Science of the Total Environment, Bd. 505, pp. 367–375, 2015.

    Google Scholar 

  13. T. Grigoratos und G. Martini, „Brake wear particle emissions – A review,“ Environmental Science and Pollution Research, Bd. 22, pp. 2491–2504, 2015.

    Article  Google Scholar 

  14. A. Thorpe und R. Harrison, „Sources and properties of non-exhaust particulate matter from roaf traffic: A review,“ Science of the Total Environment, Bd. 400, pp. 270–282, 2008.

    Article  Google Scholar 

  15. C. Asbach, A. Todea, M. Zessinger und H. Kaminski, „Entstehung und Möglichkeiten zur Messung von Fein- und Ultrafeinstaub beim Bremsen,“ in XXXVII. Internationales µ-Symposium 2018 – Bremsen-Fachtagung (Hrsg. Ralph Mayer), Berlin, Springer Vieweg, 2018, pp. 45–67.

    Google Scholar 

  16. H. Niemann, H. Winner, C. Asbach, H. Kaminski, G. Frentz und R. Milczarek, „Influence of disc temperature on ultrafine, fine and coarse particle emissions of passenger car disc brakes with organic and inorganic pad binder materials,“ Atmosphere, Bd. 11, p. 1060, 2020.

    Article  Google Scholar 

  17. O. Nosko, J. Vanhanen und U. Olofsson, „Emission of 1.3-10 nm airborne particles from brake materials,“ Aerosol Science and Technology, Bd. 51, pp. 91–96, 2017.

    Article  Google Scholar 

  18. T. Grigoratos, M. Mathissen, R. Vedula, A. Mamakos, C. Agudelo, S. Gramstat und B. Giechaskiel, „Interlaboratory study on brake particle emissions – Part I: Particulate matter mass emissions,“ Atmosphere, Bd. 14, p. 498, 2023.

    Article  Google Scholar 

  19. M. Mathissen, T. Grigoratos, S. Gramstat, A. Mamakos, R. Vedula, C. Agudelo, J. Grochowicz und B. Giechaskiel, „Interlaboratory study on brake particle emissions Part II: Particle number emissions,“ Atmosphere, Bd. 14, p. 424, 2023.

    Article  Google Scholar 

  20. M. Mathissen, J. Grochowicz, C. Schmidt, R. Vogt, F. Farwick zum Hagen, T. Grabiec, H. Steven und T. Grigoratos, „A novel real-world braking cycle for studying brake wear particle emissions,“ Wear, Bde. %1 von %2414-415, pp. 219–226, 2018.

    Google Scholar 

  21. F. Keller, L. Krupa, A. Beck, T. Wörz, B. Weller, K. Kohn, S. Pfannkuch, T. Jessberger, M. Lehmann und S. Ashish, „Development of a Modeling Approach to Numerically Predict Filtration Efficiencies of Brake Dust Particle Filters,“ SAE Technical Paper, pp. 2021-01-1285, 2021.

    Google Scholar 

  22. M. Hascoet und L. Adamczak, „At source brake dust collection system,“ Results in Engineering, Bd. 5, p. 100083, 2020.

    Article  Google Scholar 

  23. „metrolisboa,“ [Online]. Available: https://www.metrolisboa.pt/en/travel/diagrams-and-maps/. [Zugriff am 27 07 2023].

  24. J. Kim, G. W. Mulholland, S. Kukuck und D. Pui, „Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (nano-DMA) for Knudsen number from 0.5 to 83,“ Journal of Research of the National Institute of Standards and Technology, Bd. 110, pp. 31–54, 2005.

    Article  Google Scholar 

  25. W. Hinds und Y. Zhu, Aerosol Technology – Properties, behavior, and measurement of airborne particles, Hoboken, NJ, USA: John Wiley & Sons, 2022.

    Google Scholar 

  26. S. Wang und R. Flagan, „Scanning Electrical Mobility Spectrometer,“ Aerosol Science & Technology, Nr. 13, pp. 230–240; https://doi.org/10.1080/02786829008959441, 1990.

    Article  Google Scholar 

  27. H. Tammet, A. Mirme und E. Tamm, „Electrical aerosol spectrometer of Tartu University,“ Atmospheric Research, Bd. 62, pp. 315–324.

    Google Scholar 

  28. M. Levin, A. Gudmundsson, J. Pagels, M. Fierz, K. Molhave, J. Löndahl, K. Jensen und I. Koponen, „Limitations in the use of unipolar charging for electrical mobility sizing instruments: A study of the Fast Mobility Particle Sizer,“ Aerosol Science and Technology, Bd. 49, pp. 556–565; https://doi.org/10.1080/02786826.2015.1052039, 2015.

    Article  Google Scholar 

  29. H. Kaminski, T. Kuhlbusch, S. Rath, U. Götz, M. Sprenger, D. Wels, J. Polloczek, V. Bachmann, K. H. J. Dziurowitz, A. Schwiegelshohn, C. Monz, D. Dahmann und C. Asbach, „Comparability of mobility particle sizers and diffusion chargers,“ Journal of Aerosol Science, Bd. 57, pp. 156–178, 2013.

    Article  Google Scholar 

  30. J. Gebhart, „Optical Direct-Reading Techniques: Light Intensity Systems,“ in Aerosol Measurement: Principles, Techniques and Applications, New York City, Van Nostrand Reinhold; ed. K. Willeke, P.A. Baron, 1993, pp. 313–344.

    Google Scholar 

  31. T. Grigoratos, A. Mamakos, R. Vedula, M. Arndt, D. Lugovyy, C. Hafenmeyer, M. Moisio, C. Agudelo und B. Giechaskiel, „Characterization of laboratory particulate matter (PM) mass setups for brake emission measurements,“ Atmosphere, Bd. 14, p. 516, 2023.

    Article  Google Scholar 

Download references

The AeroSolfd project is funded by the European Union under the Horizon Europe program (Grant Number 101056661)

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Asbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weissbuch, M. et al. (2023). Particulate Matter Emissions from Metro Brakes using the Example of the Lisbon Metro. In: Mayer, R. (eds) XL. Internationales μ-Symposium 2023 Bremsen-Fachtagung. IµSBC 2023. Proceedings. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-68167-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-68167-1_8

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-68166-4

  • Online ISBN: 978-3-662-68167-1

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics