Skip to main content

Endocrinology of the Placenta

  • Chapter
  • First Online:
The Placenta
  • 614 Accesses

Abstract

The placenta is the largest endocrine organ during pregnancy dominating the entire hormonal system. Placental peptide and steroid hormones influence all maternal endocrine functional circuits and regulatory axes. Progesterone, as the central pregnancy-maintaining hormone, relaxes the myometrium and has anti-inflammatory and immunosuppressive functions that allow the formation of the necessary immune tolerance at the fetomaternal interface. Estrogens regulate maternal adaptation to pregnancy. Leptin, placental lactogen, and placental growth hormone alter maternal metabolism to use its resources to provide continuous fetal nutrition. Placental corticotrophin releasing hormone (CRH) is central to the initiation of labor as the placental clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashworth C, Hoggard N, Thomas L, Mercer JG, Wallace JM, Lea RG (2000) Placental leptin. Rev Reprod 5:18–24

    Article  CAS  PubMed  Google Scholar 

  • Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842

    Article  PubMed  Google Scholar 

  • Braun T, Sloboda DM, Tutschek B, Harder T, Challis JR, Dudenhausen JW, Plagemann A, Henrich W (2015) Fetal and neonatal outcomes after term and preterm delivery following betamethasone administration. Int J Gynaecol Obstet 130(1):64–69

    Article  PubMed  Google Scholar 

  • Bukovsky A, Cekanova M, Caudle MR, Wimalasena J, Foster JS, Henley DC, Elder RF (2003) Expression and localization of estrogen receptor-alpha protein in normal and abnormal term placentae and stimulation of trophoblast differentiation by estradiol. Reprod Biol Endocrinol 1:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Causevic M, Mohaupt M (2007) 11beta-Hydroxysteroid dehydrogenase type 2 in pregnancy and preeclampsia. Mol Aspects Med 28(2):220–226

    Article  CAS  PubMed  Google Scholar 

  • Challis JR (2001) Understanding pre-term birth. Clin Invest Med 24:60–67

    CAS  PubMed  Google Scholar 

  • Chang K, Zhang L (2008) Steroid hormones and uterine vascular adaptation to pregnancy. Reprod Sci 15(4):336–348

    Article  CAS  PubMed  Google Scholar 

  • Corcoran JJ, Nicholson C, Sweeney M, Charnock JC, Robson SC, Westwood M, Taggart MJ (2014) Human uterine and placental arteries exhibit tissue-specific acute responses to 17β-estradiol and estrogen-receptor-specific agonists. Mol Hum Reprod 20(5):433–441

    Article  CAS  PubMed  Google Scholar 

  • Costa MA (2016) The endocrine function of human placenta: an overview. Reprod Biomed Online 32(1):14–43

    Article  CAS  PubMed  Google Scholar 

  • Csapo AI, Knobil E, van der Molen HJ, Wiest WG (1971) Peripheral plasma progesterone levels during human pregnancy and labor. Am J Obstet Gynecol 110:630–632

    Article  CAS  PubMed  Google Scholar 

  • Diczfalusy E (1984) The early history of estriol. J Steroid Biochem 4:945–953

    Article  Google Scholar 

  • Di WL, Lachelin GC, McGarrigle HH, Thomas NS, Becker DL (2001) Oestriol and oestradiol increase cell to cell communication and connexin43 protein expression in human myometrium. Mol Hum Reprod 7:671–679

    Article  CAS  PubMed  Google Scholar 

  • Goldman S, Shalev E (2007) Progesterone receptor profile in the decidua and fetal membrane. Front Biosci 12:634–648

    Article  CAS  PubMed  Google Scholar 

  • Groothuis PG, Dassen HH, Romano A, Punyadeera C (2007) Estrogen and the endometrium: lessons learned from gene expression profiling in rodents and human. Hum Reprod Update 13:405–417

    Article  CAS  PubMed  Google Scholar 

  • Halasz M, Szekeres-Bartho J (2013) The role of progesterone in implantation and trophoblast invasion. J Reprod Immunol 97:43–50

    Article  CAS  PubMed  Google Scholar 

  • Handwerger S, Freemark M (2000) The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab 13:343–356

    Article  CAS  PubMed  Google Scholar 

  • Handschuh K, Guibourdenche J, Tsatsaris V, Guesnon M, Laurendeau I, Evain-Brion D, Fournier T (2007) Human chorionic gonadotropin expression in human trophoblasts from early placenta: comparative study between villous and extra villous trophoblastic cells. Placenta 28:175–184

    Article  CAS  PubMed  Google Scholar 

  • Kuon RJ, Abele H, Berger R, Garnier Y, Maul H, Schleußner E, Rath W (2015) Progesterone for Prevention of Preterm Birth—Evidence-based Indications. Z Geburtshilfe Neonatol 219(3):125–135

    Google Scholar 

  • Ladyman SR, Augustine RA, Grattan DR (2010) Hormone interactions regulating energy balance during pregnancy. J Neuroendocrinol 22:805–817

    CAS  PubMed  Google Scholar 

  • Newbern D, Freemark M (2011) Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 18:409–416

    Article  CAS  PubMed  Google Scholar 

  • Nwabuobi C, Arlier S, Schatz F, Guzeloglu-Kayisli O, Lockwood CJ, Kayisli UA (2017) hCG: biological functions and clinical applications. Int J Mol Sci 18(10):E2037. https://doi.org/10.3390/ijms18102037

    Article  CAS  Google Scholar 

  • Park HK, Ahima RS (2015) Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 64:24–34

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pérez A, Sánchez-Jiménez F, Maymó J, Dueñas JL, Varone C, Sánchez-Margalet V (2015) Role of leptin in female reproduction. Clin Chem Lab Med 53(1):15–28

    Article  PubMed  Google Scholar 

  • Petraglia F, Florio P, Nappi C, Genazzani AR (1996) Peptide signaling in human placenta and membranes: autocrine, paracrine, and endocrine mechanisms. Endocr Rev 17(2):156–186

    CAS  PubMed  Google Scholar 

  • Petraglia F, Imperatore A, Challis JR (2010) Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev 31(6):783–816

    Article  CAS  PubMed  Google Scholar 

  • Renthal N, Koriand’r CW, Montalbano AP, Chien-Cheng C, Lu G, Mendelson C (2015) Molecular regulation of parturition: a myometrial perspective. Cold Spring Harb Perspect Med 5:a023069

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross DS (2017) Overview of thyroid disease in pregnancy. In Cooper DS, Lockwood CJ, editors. UpToDate, http://www.uptodate.com/contents/overview-of-thyroid-disease-in-pregnancy. Accessed on 30 Nov 2017

  • Schleußner E (2010) Normale Geburt. In: Kiechle M (Hrsg) Gynäkologie und Geburtshilfe, 2. Aufl. Elsevier, München, S 379–388

    Google Scholar 

  • Schleußner E (2016a) Fetale programmierung. In: Schneider H, Husslein P, Schneider KTM (Hrsg) Die Geburtshilfe, 5. Aufl. Springer, Heidelberg, S 367–378

    Google Scholar 

  • Schleußner E (2016b) Molekulare Grundlagen von Wehentätigkeit und Geburt. In: Liedtke C, Rody A (Hrsg) Molekulare Gynäkologie und Geburtshilfe für die Praxis, 5. Aufl. Thieme, Stuttgart, S 42–46

    Google Scholar 

  • Schleußner E (2017) Physiologische Veränderungen in der Schwangerschaft. In: Fischer-Betz R, Østensen M (Hrsg) Rheumatische Erkrankungen in der Schwangerschaft. De Gruyter Berlin, Boston S, S 11–26

    Google Scholar 

  • Schleussner E, Weitschat T, Hüller M, Albrecht S, Möller U, Seewald H-J (2000) Effects of glucocorticoid administration on placental CRH secretion and fetal and maternal adrenal function in vivo. Placenta 21:42–43

    Google Scholar 

  • Smith R (2007) Parturition. N Engl J Med 356:271–283

    Article  CAS  PubMed  Google Scholar 

  • Toriola AT, Vääräsmäki M, Lehtinen M et al (2011) Determinants of maternal sex steroids during the first half of pregnancy. Obstet Gynecol 118:1029–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuckey RC (2005) Progesterone synthesis by the human placenta. Placenta 26:273–2281

    Article  CAS  PubMed  Google Scholar 

  • Wood CE, Keller-Wood M (2016) The critical importance of the fetal hypothalamus-pituitary-adrenal axis. F1000Research 5(F1000 Faculty Rev):115. https://doi.org/10.12688/f1000research.7224.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekkehard Schleußner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schleußner, E. (2023). Endocrinology of the Placenta. In: Huppertz, B., Schleußner, E. (eds) The Placenta. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66256-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-66256-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-66255-7

  • Online ISBN: 978-3-662-66256-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics