Skip to main content

Placental Function—Nutrient Transport—Gas Exchange

  • Chapter
  • First Online:
The Placenta

Abstract

The primary function of the placenta is to supply the growing fetus with energy in the form of nutrients and with oxygen. These two functions are discussed in detail in the following chapter. The supply of nutrients is subdivided into the transport of (1) lipids and fatty acids, (2) glucose, (3) proteins and amino acids, and (4) the transport of trace elements and minerals. Finally, the maternofetal gas exchange of oxygen and carbon dioxide and the special properties of fetal hemoglobin are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnone A (1972) X-ray diffraction study of binding of 2,3-Diphosphoglycerate to human Deoxyhaemoglobin. Nature 237(5351):146–149

    Article  CAS  PubMed  Google Scholar 

  • Aslam N, McArdle HJ (1992) Mechanism of zinc uptake by microvilli isolated from human term placenta. J Cell Physiol 151(3). https://doi.org/10.1002/jcp.1041510312

  • Aynsley-Green A et al (1985) The metabolic and endocrine milieu of the human fetus at 18–21 weeks of gestation. II. Blood glucose, lactate, pyruvate and ketone body concentrations. Biol Neonate 47(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Bajoria R et al (2002) Placenta as a link between amino acids, insulin-IGF axis, and low birth weight: Evidence from twin studies. J Clin Endocrinol Metab 87(1):308–315

    Article  CAS  PubMed  Google Scholar 

  • Barker DJP (1998) In utero programming of chronic disease. Clin Science 95(2):115–128

    Article  CAS  Google Scholar 

  • Beer R, Doll E, Wenner J (1958) Shift in oxygen dissociation curve of the blood of infants in the first month of life. Pflugers Archiv für die gesamte Physiologie des Menschen und der Tiere 265(6):526–540

    Article  CAS  PubMed  Google Scholar 

  • Belkacemi L et al (2003) Expression of calbindin-D28k (CaBP28k) in trophoblasts from human term placenta1. Biol Reprod 68(6):1943–1950

    Article  CAS  PubMed  Google Scholar 

  • Belkacemi L et al (2005) Calcium channels, transporters and exchangers in placenta: a review. Cell Calcium 37(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Benesch R, Benesch RE (1967) The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Comm 26(2):162–167

    Article  CAS  PubMed  Google Scholar 

  • Bohr C, Hasselbalch K, Krogh A (1904) Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand Archiv Physiol 16(2):402–412

    Article  Google Scholar 

  • Bozzetti P et al (1988) The relationship of maternal and fetal glucose concentrations in the human from midgestation until term. Metabolism 37(4):358–363

    Article  CAS  PubMed  Google Scholar 

  • Buchanan TA et al (1990) Insulin sensitivity and B-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am J Obstet Gynecol 162(4):1008–1014

    Article  CAS  PubMed  Google Scholar 

  • Burd LI et al (1975) Placental production and foetal utilisation of lactate and pyruvate. Nature 254(5502):710–711

    Article  CAS  PubMed  Google Scholar 

  • Catalano PM et al (1991) Incidence and risk factors associated with abnormal postpartum glucose tolerance in women with gestational diabetes. Am J Obstet Gynecol 165(4 Pt 1):914–919

    Article  CAS  PubMed  Google Scholar 

  • Cetin I et al (2005) Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol 192(2):610–617

    Article  CAS  PubMed  Google Scholar 

  • Challis DE et al (2000) Glucose metabolism is elevated and vascular resistance and maternofetal transfer is normal in perfused placental cotyledons from severely growth-restricted fetuses. Pediatr Res 47(3):309–315

    Article  CAS  PubMed  Google Scholar 

  • Chanutin A, Curnish RR (1967) Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys 121(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Chubanov V et al (2016) Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. Elife 5. https://doi.org/10.7554/elife.20914

  • Cleal JK et al (2007) Modification of fetal plasma amino acid composition by placental amino acid exchangers in vitro. J Physiol 582(2):871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delivoria-Papadopoulos M, McGowan J (2011) Oxygen transport and delivery. In: Polin R, Fox W, Abman S (eds) Fetal and neonatal physiology. Elsevier, p 972

    Google Scholar 

  • Delivoria-Papadopoulos M, Roncevic N, Oski F (1971) Postnatal changes in oxygen transport of term, premature, and sick infants: the role of red cell 2,3-diphosphoglycerate and adult hemoglobin. Pediatr Res 5:235

    Article  Google Scholar 

  • Desoye G, Gauster M, Wadsack C (2011) Placental transport in pregnancy pathologies. Am J Clin Nutr 94(6):1896–1902

    Article  Google Scholar 

  • Douglas GC et al (1998) Uptake of 125I-labelled alpha2-macroglobulin and albumin by human placental syncytiotrophoblast in vitro. J Cell Biochem 68(4):427–435

    Article  CAS  PubMed  Google Scholar 

  • Drakesmith H, Nemeth E, Ganz T (2015) Ironing out ferroportin. Cell Metab 22(5):777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durnwald C et al (2004) Evaluation of body composition of large-for-gestational-age infants of women with gestational diabetes mellitus compared with women with normal glucose tolerance levels. Am J Obstet Gynecol 191(3):804–808

    Article  CAS  PubMed  Google Scholar 

  • Ericsson A et al (2005) Hormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments. Am J Physiol Regul Integr Comp Physiol 288(3):R656–R662

    Article  CAS  PubMed  Google Scholar 

  • Finch CA et al (1983) Fetal iron balance in the rat. Am J Clin Nutr 37(6):910–917

    Article  CAS  PubMed  Google Scholar 

  • Fleming MD et al (1998) Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Genetics 95:1148–1153

    CAS  Google Scholar 

  • Ford D (2004) Intestinal and placental zinc transport pathways. Proc Nutr Soc 63(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Freinkel N (1980) Banting lecture 1980. Of pregnancy and progeny. Diabetes 29(12):1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Gauster M et al (2007) Dysregulation of placental endothelial lipase and lipoprotein lipase in intrauterine growth-restricted pregnancies. J Clin Endocrin Metabol 92(6):2256–2263

    Article  CAS  Google Scholar 

  • Gilbert M, Hauguel S, Bouisset M (1984) Uterine blood flow and substrate uptake in conscious rabbit during late gestation. Am J Physiol 247(5 Pt 1):E574–E580

    CAS  PubMed  Google Scholar 

  • Glazier JD et al (1997) Association between the activity of the system A amino acid transporter in the microvillous plasma membrane of the human placenta and severity of fetal compromise in intrauterine growth restriction. Pediatr Res 42(4):514–519

    Article  CAS  PubMed  Google Scholar 

  • Goyer RA, Haust MD, Cherian MG (1992) Cellular localization of metallothionein in human term placenta. Placenta 13(4):349–355

    Article  CAS  PubMed  Google Scholar 

  • Haggarty P (2010) Fatty acid supply to the human fetus. Ann Rev Nutr 30(1):237–255

    Article  CAS  Google Scholar 

  • Hahn D et al (2001) From maternal glucose to fetal glycogen: expression of key regulators in the human placenta. Mol Hum Reprod 7(12):1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Hahn T et al (1995) Localisation of the high affinity facilitative glucose transporter protein GLUT 1 in the placenta of human, marmoset monkey (Callithrix jacchus) and rat at different developmental stages. Cell Tissue Res 280(1):49–57

    CAS  PubMed  Google Scholar 

  • Hahn T et al (2000) Hyperglycaemia-induced subcellular redistribution of GLUT1 glucose transporters in cultured human term placental trophoblast cells. Diabetologia 43(2):173–180

    Article  CAS  PubMed  Google Scholar 

  • He Z, Russell J (2001) Expression, purification, and characterization of human hemoglobins Gower-1 (zeta2epsilon2), Gower-2 (alpha2epsilon2), and Portland-2 (zeta2beta2) assembled in complex transgenic-knockout mice. Blood 97(4):1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Herrera E, Desoye G (2016) Maternal and fetal lipid metabolism under normal and gestational diabetic conditions. Horm Mol Biol Clin Investig 26(2):109–127

    CAS  PubMed  Google Scholar 

  • Herrera E et al (2006) Maternal lipid metabolism and placental lipid transfer. Horm Res 65(S3):9–64

    Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J Physiol 40(Supplement-Proceedings of the physiological society):iv–vii

    Google Scholar 

  • Hofmann O, Mould R, Brittain T (1995) Allosteric modulation of oxygen binding to the three human embryonic haemoglobins. Biochem J 306(Pt 2):367–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain SM, Mughal MZ (1992) Mineral transport across the placenta. Arch Dis Child 67:874–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innis SM (2005) Essential fatty acid transfer and fetal development. Placenta 26(Suppl A):70–75

    Article  Google Scholar 

  • Jansson T, Powell TL (2006) IFPA 2005 Award in placentology lecture. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor?—a review. Placenta 27 Suppl A:91–97

    Article  Google Scholar 

  • Jansson T, Scholtbach V, Powell TL (1998) Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr Res 44(4):532–537

    Article  CAS  PubMed  Google Scholar 

  • Jansson T, Wennergren M, Illsley NP (1993) Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J Clin Endocrinol Metab 77(6):1554–1562

    CAS  PubMed  Google Scholar 

  • Jansson T et al (2002a) Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes 51(7):2214–2219

    Article  CAS  PubMed  Google Scholar 

  • Jansson T et al (2002b) Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta 23(5):392–399

    Article  CAS  PubMed  Google Scholar 

  • Kalhan S, Parimi P (2000) Gluconeogenesis in the fetus and neonate. Semin Perinatol 24(2):94–106

    Article  CAS  PubMed  Google Scholar 

  • Kalhan SC et al (1979) Glucose production in pregnant women at term gestation. sources of glucose for human fetus. J Clin Invest 63(3):388–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolisek M et al (2013) Hypertension in pregnancy SLC41A1 is the only magnesium responsive gene significantly overexpressed in placentas of preeclamptic women. Hypertension Pregnancy 32(4):378–389

    Article  CAS  Google Scholar 

  • Kovalevsky AY et al (2010) Direct determination of protonation states of histidine residues in a 2 A neutron structure of deoxy-human normal adult hemoglobin and implications for the Bohr effect. J Mol Biol 398(2):276–291

    Article  CAS  PubMed  Google Scholar 

  • Kudo Y, Boyd CAR (2001) Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J Physiol 531(2):405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafond J et al (1988) Parathyroid hormone receptor in human placental syncytiotrophoblast brush border and basal plasma membranes. Endocrinology 123(6):2834–2840

    Article  CAS  PubMed  Google Scholar 

  • Lafond J et al (2001) Hormonal regulation and implication of cell signaling in calcium transfer by placenta. Endocrine 14(3):285–294

    Article  CAS  PubMed  Google Scholar 

  • Lajeunesse D, Brunette MG (1988) Sodium gradient-dependent phosphate transport in placental brush border membrane vesicles. Placenta 9(2):117–128

    Article  CAS  PubMed  Google Scholar 

  • Leitner Y, Fattal-Valevski A, Geva R, Eshel R, Toledano-Alhadef H, Rotstein M, Bassane H, Radianu B, Bitchonsky O, Jaffa AJ et al (2007) Neurodevelopmental outcome of children with intrauterine growth retardation: a longitudinal, 10-Year prospective study. J Child Neurol 22:580–587

    Article  PubMed  Google Scholar 

  • Lourdes M et al (1992) Effect of chronic maternal dietary magnesium deficiency on placental calcium transport. J Am Coll Nutr 11(1):87–92

    Article  Google Scholar 

  • Mahendran D et al (1993) Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. Pediatr Res 34(5):661–665

    Article  CAS  PubMed  Google Scholar 

  • Mas A, Sarkar B (1991) Binding, uptake and efflux of 65Zn by isolated human trophoblast cells. BBA—Mol Cell Res 1092(1):35–38

    CAS  Google Scholar 

  • Maymon R et al (2000) Localization of p43 placental isoferritin in human maternal-fetal tissue interface. Am J Obstet Gynecol 182(3):670–674

    Article  CAS  PubMed  Google Scholar 

  • Moreau R et al (2003) Expression and role of calcium-ATPase pump and sodium-calcium exchanger in differentiated trophoblasts from human term placenta. Mol Reprod Dev 65(3):283–288

    Article  CAS  PubMed  Google Scholar 

  • Morriss FH et al (1974) The glucose/oxygen quotient of the term human fetus. Biol Neonate 25(1–2):44–52

    Article  PubMed  Google Scholar 

  • Nelson DM et al (2003) Hypoxia reduces expression and function of system A amino acid transporters in cultured term human trophoblasts. AJP: Cell Physiol 284(2):C310–C315

    CAS  Google Scholar 

  • Nishimura M, Naito S (2008) Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet 23(1):22–44

    Article  CAS  PubMed  Google Scholar 

  • Ohgami RS et al (2006) The steap proteins are metalloreductases. Blood 108(4):1388–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto Y et al (2002) Expression and regulation of 4F2hc and hLAT1 in human trophoblasts. Am J Physiol Cell Physiol 282(1):C196–C204

    Article  CAS  PubMed  Google Scholar 

  • Osmond DT et al (2001) Placental glucose transport and utilisation is altered at term in insulin-treated, gestational-diabetic patients. Diabetologia 44(9):1133–1139

    Article  CAS  PubMed  Google Scholar 

  • Paolini CL et al (2001) Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies. J Clin Endocrinol Metab 86(11):5427–5432

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF (1964) The hemoglobin molecule. Sci Am 211:64–76

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228:726–734

    Article  CAS  PubMed  Google Scholar 

  • Pinilla-Tenas JJ et al (2011) Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. AJP: Cell. Physiology 301(4):C862–C871

    CAS  Google Scholar 

  • Ponka P, Lok CN (1999) The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 31(10):1111–1137

    Article  CAS  PubMed  Google Scholar 

  • Roos S et al (2007) Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth. J Physiol 582(1):449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salle B et al (1987) Vitamin D metabolism in preterm infants. Biol Neonate 52:119–130

    Article  CAS  PubMed  Google Scholar 

  • Schauberger CW, Pitkin RM (1979) Maternal-perinatal calcium relationships. Obstet Gynecol 53(1):74–76

    CAS  PubMed  Google Scholar 

  • Shibata E et al (2006) Angiotensin II decreases system A amino acid transporter activity in human placental villous fragments through AT1 receptor activation. Am J Physiol Endocrinol Metab 291(5):E1009–E1016

    Article  CAS  PubMed  Google Scholar 

  • Sibley CP, Boyd RD (1988) Control of transfer across the mature placenta. Ox Rev Reprod Biol 10:382–435

    CAS  Google Scholar 

  • Tjoelker LW et al (1994) Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry 33(11):3229–3236

    Article  CAS  PubMed  Google Scholar 

  • Tobin JD, Roux JF, Soeldner JS (1969) Human fetal insulin response after acute maternal glucose administration during labor. Pediatrics 44(5):668–671

    Article  CAS  PubMed  Google Scholar 

  • Voets T et al (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • von Hüfner G (1889) Ueber krystallinisches Hämaglobin. Zeitschrift für physiolog. Chemie, XI–XIII

    Google Scholar 

  • Wang CY et al (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 287(41):34032–34043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterman IJ et al (2000) Further characterization of a novel triacylglycerol hydrolase activity (pH 6.0 optimum) from microvillous membranes from human term placenta. Placenta 21(8):813–823

    Article  CAS  PubMed  Google Scholar 

  • Whaley WH, Zuspan FP, Nelson GH (1966) Correlation between maternal and fetal plasma levels of glucose and free fatty acids. Am J Obstet Gynecol 94(3):419–421

    Article  CAS  PubMed  Google Scholar 

  • Xing AY et al (1998) Unexpected expression of glucose transporter 4 in villous stromal cells of human placenta. J Clin Endocrinol Metab 83(11):4097–4101

    CAS  PubMed  Google Scholar 

  • Yang H et al (2014) Comparing the expression patterns of placental magnesium/phosphorus-transporting channels between healthy and preeclamptic pregnancies. Mol Reprod Dev 81(9):851–860

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2003) The cooperativity of human fetal and adult hemoglobins is optimized: a consideration based on the effectiveness of the Bohr shift. Zoolog Sci 20(1):23–28

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gruber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gruber, M., Hirschmugl, B., Schliefsteiner, C., Wadsack, C. (2023). Placental Function—Nutrient Transport—Gas Exchange. In: Huppertz, B., Schleußner, E. (eds) The Placenta. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66256-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-66256-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-66255-7

  • Online ISBN: 978-3-662-66256-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics