Skip to main content

Estimation of Tumor Immune Signatures from Transcriptomics Data

  • Chapter
  • First Online:
Handbook of Statistical Bioinformatics

Abstract

Enhancing the patients’ immune response to cancer using immune checkpoint blockages has shown promising results in treating multiple cancers over the past decades. However, the cellular composition of tumors and their immune microenvironment varies between patients and cancer types. In addition, different immune cell types play different roles in tumor control and response to therapy through either pro- or anti-tumorigenic functions. Therefore, a deep understanding of the patient-specific tumor-infiltrating immune signatures and their functions in the tumor microenvironment (TME) can help the prediction of therapy response and ultimately guide the development of personalized immunotherapies. Several computational algorithms and approaches have been developed to infer tumor immune composition using transcriptomics data. In this chapter, I will review the statistical and computational methods that estimate the tumor immune signatures from RNA sequencing data and further highlight well-executed benchmarking studies. I will also discuss challenges and opportunities for integrating signatures learned at single-cell level to characterize immune composition of bulk tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214

    Article  CAS  Google Scholar 

  2. Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11(1):24–37

    Article  CAS  Google Scholar 

  3. Topalian SL et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287

    Article  CAS  Google Scholar 

  4. De Simone M et al (2016) Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45(5):1135–1147

    Article  Google Scholar 

  5. Plitas G et al (2016) Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45(5):1122–1134

    Article  CAS  Google Scholar 

  6. Enamorado M et al (2017) Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8(+) T cells. Nat Commun 8:16073

    Article  CAS  Google Scholar 

  7. Egelston C et al (2017) CD8+ tissue resident memory T cells are associated with good prognosis in breast cancer patients. J Immunol 198(1 Supplement):196.11

    Google Scholar 

  8. Sen DR et al (2016) The epigenetic landscape of T cell exhaustion. Science (New York, NY) 354(6316):1165–1169

    Article  CAS  Google Scholar 

  9. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499

    Article  CAS  Google Scholar 

  10. Elloumi F et al (2011) Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples. BMC Med Genet 4:54–54

    Google Scholar 

  11. de Matos LL et al (2010) Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 5:9–20

    Article  Google Scholar 

  12. Zheng C et al (2017) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169(7):1342–1356.e16

    Article  CAS  Google Scholar 

  13. Zheng GXY et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    Article  CAS  Google Scholar 

  14. Tirosh I et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science (New York, NY) 352(6282):189–196

    Article  CAS  Google Scholar 

  15. Chung W et al (2017) Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 8:15081

    Article  CAS  Google Scholar 

  16. Brennecke P et al (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10(11):1093–1095

    Article  CAS  Google Scholar 

  17. Avila Cobos F et al (2018) Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics 34(11):1969–1979

    Article  Google Scholar 

  18. Finotello F, Trajanoski Z (2018) Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother: CII 67(7):1031–1040

    Article  CAS  Google Scholar 

  19. Venet D et al (2001) Separation of samples into their constituents using gene expression data. Bioinformatics 17(Suppl 1):S279–S287

    Article  Google Scholar 

  20. Shen-Orr SS, Gaujoux R (2013) Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr Opin Immunol 25(5):571–578

    Article  CAS  Google Scholar 

  21. Abbas AR et al (2009) Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One 4(7):e6098

    Article  Google Scholar 

  22. Gong T, Szustakowski JD (2013) DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics 29(8):1083–1085

    Article  CAS  Google Scholar 

  23. Li B et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17(1):174

    Article  Google Scholar 

  24. Racle J et al (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. elife 6:e26476

    Article  Google Scholar 

  25. Finotello F et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11(1):34

    Article  Google Scholar 

  26. Newman AM et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457

    Article  CAS  Google Scholar 

  27. Yu X et al (2019) Estimation of immune cell content in tumor using single-cell RNA-seq reference data. BMC Cancer 19(1):715

    Article  Google Scholar 

  28. Newman AM et al (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37(7):773–782

    Article  CAS  Google Scholar 

  29. Lu P, Nakorchevskiy A, Marcotte EM (2003) Expression deconvolution: a reinterpretation of DNA microarray data reveals dynamic changes in cell populations. Proc Natl Acad Sci U S A 100(18):10370–10375

    Article  CAS  Google Scholar 

  30. Abbas AR et al (2005) Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 6(4):319–331

    Article  CAS  Google Scholar 

  31. Gong T et al (2011) Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples. PLoS One 6(11):e27156

    Article  CAS  Google Scholar 

  32. Bertsekas DP (1997) Nonlinear programming. J Oper Res Soc 48(3):334

    Article  Google Scholar 

  33. Pan Q et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1415

    Article  CAS  Google Scholar 

  34. Mabbott NA et al (2013) An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14:632–632

    Article  CAS  Google Scholar 

  35. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1):118–127

    Article  Google Scholar 

  36. Li B, Liu JS, Liu XS (2017) Revisit linear regression-based deconvolution methods for tumor gene expression data. Genome Biol 18(1):127

    Article  Google Scholar 

  37. Danaher P et al (2017) Gene expression markers of tumor infiltrating leukocytes. J Immunother Cancer 5(1):18

    Article  Google Scholar 

  38. Li T et al (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514

    Article  CAS  Google Scholar 

  39. Consortium, G.T (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science (New York, NY) 348(6235):648–660

    Article  Google Scholar 

  40. Plattner C, Finotello F, Rieder D (2020) Chapter ten – Deconvoluting tumor-infiltrating immune cells from RNA-seq data using quanTIseq. In: Galluzzi L, Rudqvist N-P (eds) Methods in enzymology. Academic Press, pp 261–285

    Google Scholar 

  41. Schreiber-Gregory D (2018) Regulation techniques for multicollinearity: lasso, ridge, and elastic nets

    Google Scholar 

  42. Schölkopf B et al (2000) New support vector algorithms. J Neural Comput 12(5):1207–1245

    Google Scholar 

  43. Qiao W et al (2012) PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput Biol 8(12):e1002838

    Article  CAS  Google Scholar 

  44. Wang X et al (2019) Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat Commun 10(1):380

    Article  CAS  Google Scholar 

  45. Dong M et al (2020) SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Brief Bioinform 22(1):416–427

    Article  Google Scholar 

  46. Zhong Y et al (2013) Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinformatics 14(1):89

    Article  Google Scholar 

  47. Gaujoux R, Seoighe C (2012) Semi-supervised nonnegative matrix factorization for gene expression deconvolution: a case study. Infect Genet Evol 12(5):913–921

    Article  CAS  Google Scholar 

  48. Brunet J-P et al (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci 101(12):4164–4169

    Article  CAS  Google Scholar 

  49. Repsilber D et al (2010) Biomarker discovery in heterogeneous tissue samples-taking the in-silico deconfounding approach. BMC Bioinformatics 11(1):27

    Article  Google Scholar 

  50. Gaujoux R, Seoighe C (2013) CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29(17):2211–2212

    Article  CAS  Google Scholar 

  51. Li Z, Wu H (2019) TOAST: improving reference-free cell composition estimation by cross-cell type differential analysis. Genome Biol 20(1):190

    Article  Google Scholar 

  52. Mootha VK et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273

    Article  CAS  Google Scholar 

  53. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  Google Scholar 

  54. Barbie DA et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462(7269):108–112

    Article  CAS  Google Scholar 

  55. Yoshihara K et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4(1):2612

    Article  Google Scholar 

  56. Tappeiner E et al (2017) TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics (Oxford, England) 33(19):3140–3141

    Article  CAS  Google Scholar 

  57. Angelova M et al (2015) Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 16(1):64

    Article  Google Scholar 

  58. Charoentong P et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262

    Article  CAS  Google Scholar 

  59. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220

    Article  Google Scholar 

  60. Şenbabaoğlu Y et al (2016) Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol 17(1):231–231

    Article  Google Scholar 

  61. Bindea G et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795

    Article  CAS  Google Scholar 

  62. Jiménez-Sánchez A, Cast O, Miller ML (2019) Comprehensive benchmarking and integration of tumor microenvironment cell estimation methods. Cancer Res 79(24):6238–6246

    Article  Google Scholar 

  63. Becht E et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17(1):218

    Article  Google Scholar 

  64. de Leeuw CA et al (2016) The statistical properties of gene-set analysis. Nat Rev Genet 17(6):353–364

    Article  Google Scholar 

  65. Goeman J et al (2004) A global test for groups of genes: testing association with a clinical outcome. Bioinformatics (Oxford, England) 20:93–99

    Article  CAS  Google Scholar 

  66. Sergushichev AA (2016) An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv: 060012

    Google Scholar 

  67. McGrail DJ et al (2021) High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol 32(5):661–672

    Article  CAS  Google Scholar 

  68. Edwards J et al (2020) Tumor mutation burden and structural chromosomal aberrations are not associated with T-cell density or patient survival in acral, mucosal, and cutaneous melanomas. Cancer Immunol Res 8(11):1346–1353

    Article  CAS  Google Scholar 

  69. Yu X, Wang X (2018) Tumor immunity landscape in non-small cell lung cancer. PeerJ 6:e4546

    Article  Google Scholar 

  70. Sturm G et al (2019) Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 35(14):i436–i445

    Article  CAS  Google Scholar 

  71. Petitprez F et al (2020) The murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression. Genome Med 12(1):86

    Article  CAS  Google Scholar 

  72. Chen Z et al (2017) Inference of immune cell composition on the expression profiles of mouse tissue. Sci Rep 7:40508

    Article  CAS  Google Scholar 

  73. Lizio M et al (2015) Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16(1):22

    Article  CAS  Google Scholar 

  74. Dunham I et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Article  CAS  Google Scholar 

  75. Fernández JM et al (2016) The BLUEPRINT data analysis portal. Cell Systems 3(5):491–495.e5

    Article  Google Scholar 

  76. Novershtern N et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144(2):296–309

    Article  CAS  Google Scholar 

  77. Davoli T et al (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science (New York, NY) 355(6322):eaaf8399

    Article  Google Scholar 

  78. Hoadley KA et al (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173(2):291–304.e6

    Article  CAS  Google Scholar 

  79. Carter SL et al (2012) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30(5):413–421

    Article  CAS  Google Scholar 

  80. Saltz J et al (2018) Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep 23(1):181–193.e7

    Article  CAS  Google Scholar 

  81. Schelker M et al (2017) Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat Commun 8(1):2032

    Article  Google Scholar 

  82. White BS et al (2019) Abstract 1690: a tumor deconvolution DREAM challenge: inferring immune infiltration from bulk gene expression data. Cancer Res 79(13_Supplement):1690

    Article  Google Scholar 

  83. Avila Cobos F et al (2020) Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat Commun 11(1):5650

    Article  CAS  Google Scholar 

  84. Jin H, Liu Z (2021) A benchmark for RNA-seq deconvolution analysis under dynamic testing environments. Genome Biol 22(1):102

    Article  CAS  Google Scholar 

  85. Mohammadi S et al (2017) A critical survey of deconvolution methods for separating cell types in complex tissues. Proc IEEE 105(2):340–366

    Article  Google Scholar 

  86. Regev A et al (2017) The human cell atlas. bioRxiv: 121202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, X. (2022). Estimation of Tumor Immune Signatures from Transcriptomics Data. In: Lu, H.HS., Schölkopf, B., Wells, M.T., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65902-1_16

Download citation

Publish with us

Policies and ethics