Skip to main content

Mathematiklehren und -lernen digital – Theorien, Modelle, Konzepte

  • Chapter
  • First Online:
Digitales Lehren und Lernen von Mathematik in der Schule
  • 5074 Accesses

Zusammenfassung

Mathematikdidaktische Theorien sind nicht nur für die Forschung wichtig, sie rechtfertigen ihren Geltungsanspruch auch aus ihrer Anwendbarkeit in praktischen Kontexten des Lehrens und Lernens. Gemäß diesem Anspruch werden die hier vorgestellten Theorien, Konzepte und Modelle in ihren Grundzügen beschrieben und zugleich im Kontext von Anwendungsbeispielen illustriert. Dadurch soll deutlich werden, wofür diese Theorien, Konzepte und Modelle entwickelt worden sind, wie man sie nutzen kann und welche Einsichten sie ermöglichen. Zu unterscheiden sind dabei drei Gruppen: (1) allgemeine Theoriezugänge, die besonders geeignet sind, auf digital gestütztes Lehren und Lernen angewendet zu werden, (2) Theorien, Konzepte und Modelle, die aus dem Bedürfnis, digitale Werkzeuge und deren Wirkung besser zu verstehen, entwickelt worden sind, und (3) Theorien, Konzepte und Modelle, die Phänomene der digitalen Welt zu fassen versuchen. An dieser Unterscheidung orientiert sich der vorliegende Beitrag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Literaturhinweise zu Peirce beziehen sich auf die Collected Papers, CP. Die erste Zahl ist der Band, die zweite der Paragraph. Dann bedeutet CP 2.228 Paragraph 228 in Band 2.

Literatur

  • Abrahamson, D., & Bakker, A. (2016). Making sense of movement in embodied design for mathematics learning. Cognitive Research: Principles and Implications, 1(33), 1–13. DOI https://doi.org/10.1186/s41235-016-0034-3

  • Alberto, R., Bakker, A., Walker-van Aalst, O., Boon, P., & Drijvers, P. (2019). Networking theories in design research: An embodied instrumentation case study in trigonometry. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis. (Hrsg.), Proceedings of the eleventh congress of the European Society for Research in Mathematics Education (S. 3088–3095). Freudenthal Institute, Utrecht University and ERME.

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectic between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.

    Article  Google Scholar 

  • Bakker, A., Shvarts, A., & Abrahamson, D. (2019). Generativity in design research: The case of developing a genre of action-based mathematics learning activities. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Hrsg.), Proceedings of the eleventh congress of the European Society for Research in Mathematics Education (S. 3096–3103). Freudenthal Institute, Utrecht University and ERME.

    Google Scholar 

  • Bartolini Bussi, M., & Mariotti, M. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English (Hrsg.), Handbook of international research in mathematics education (2. Aufl., S. 746–783). Routledge.

    Google Scholar 

  • Bikner-Ahsbahs, A., Rohde, S., & Weißbach, A. (2020). Digitales Feedback: Ein mächtiger ‚Akteur‘ im Lernprozess? Proceedings der Jahrestagung der Gesellschaft für Didaktik der Mathematik (Online), 28.10.2020–02.11.2020. https://doi.org/10.17877/DE290R-21236

  • Bini, G., Robuttia, O., & Bikner-Ahsbahs, A. (2020). Maths in the time of social media: Conceptualizing the internet phenomenon of mathematical memes. International Journal of Mathematical Education in Science and Technology, online, 53(6), 1257–1296. https://doi.org/10.1080/0020739X.2020.1807069

  • Bosch, M., Chevallard, Y., García, J. F. & Monhagan, J. (2020). An invitation to the anthropological theory of the didactic. In M. Bosch, Y. Chevallard, F. Javier García & J. Monhagan (Hrsg.), Working with the anthropological theory of the didactic in mathematics education. A comprehensive casebook. Routledge.

    Google Scholar 

  • Chevallard, Y., & Bosch, M. (2020). Anthropological Theory of the Didactic (ATD). In S. Lerman (Ed., 2nd ed). Encyclopedia of mathematics education (S. 53–60). Springer. https://doi.org/10.1007/978-3-030-15789-0_100034

  • Dimmel, J., & Bock, C. (2017). Handwaver: A gesture-based virtual mathematical making environment. In G. Aldon, & J. Trgalova (Hrsg.), Proceedings of the 13th international conference on technology in mathematics teaching (S. 323–328). Université Claude Bernard Lyon 1.

    Google Scholar 

  • Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75, 213–234. https://doi.org/10.1007/s10649-010-9254-5

    Article  Google Scholar 

  • Drijvers, P., Godino, J. D., Font, V., & Trouche, L. (2013). One episode, two lenses. A reflective analysis of student learning with computer algebra from instrumental and onto-semiotic perspectives. Educational Studies in Mathematics, 82, 23–49. https://doi.org/10.1007/s10649-012-9416-8

    Article  Google Scholar 

  • Duval, R. (2017). Understanding the mathematical way of thinking–the registers of semiotic representations (transl. from ed. 2011, Proem Editora Ltda, by R. M. Vidotti Kakogiannos). Springer. https://doi.org/10.1007/978-3-319-56910-9

  • Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66, 317–333. https://doi.org/10.1007/s10649-006-9072-y

  • Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71, 199–218. https://doi.org/10.1007/s10649-008-9159-8

  • Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.

    Article  Google Scholar 

  • Haspekian, M. (2005). An “Instrumental approach” to study the integrations of a computer tool into mathematics teaching: The case of spreadsheets. International Journal of Computers for Mathematical Learning, 10, 109–141. https://doi.org/10.1007/s10758-005-0395

    Article  Google Scholar 

  • Haspekian, M (2014). Teachers’ instrumental geneses when integrating spreadsheet software. In A. Clark-Wilson, O. Robutti, & N. Sinclair (Hrsg.), The mathematics teacher in the digital era, an international perspective on technology focused professional development (2. Aufl., S. 241–275). Springer. hal.archives-ouvertes.fr/hal-01002961

    Google Scholar 

  • Kullberg, A., Runesson Kempe, U., & Marton, F. (2017). What is made possible to learn when using the variation theory of learning in teaching mathematics? ZDM-Mathematics Education, 49, 559–569. https://doi.org/10.1007/s11858-017-0858-4

    Article  Google Scholar 

  • Laborde, C. (2001). Integration of technology in the design of geometry tracks with Cabri-geometry. International Journal of Computer for Mathematics Learning, 6, 283–317.

    Article  Google Scholar 

  • Leontyev, A. N. (2009). Development of mind. Selected works of Aleksei Nikolaevich Leontyev. Erythrós Press.

    Google Scholar 

  • Leung, A. (2008). Dragging in a dynamic geometry environment through the lens of variation. International Journal of Computers for Mathematical Learning, 13, 135–157. https://doi.org/10.1007/s10758-008-9130-x

    Article  Google Scholar 

  • Lewin, K. (1951). Problems of research in social psychology. In D. Cartwright (Hrsg.), Field theory in social science; selected theoretical papers. Harper & Row.

    Google Scholar 

  • Maffia, A., & Mariotti, M. A. (2020). From action to symbols: Giving meaning to the symbolic representation of the distributive law in primary school. Educational Studies in Mathematics, 104, 25–40. https://doi.org/10.1007/s10649-020-09944-5

  • Mariotti, M. A., & Maffia, A. (2018). From using artefacts to mathematical meanings: The teacher’s role in the semiotic mediation process. Didattica della matematica (DdM) Dalle ricerche alle pratiche d’aula, 3, 50–63.

    Google Scholar 

  • Mariotti, M. A., & Maracci, M. (2011) Resources for the teacher from a semiotic mediation perspective. In G. Gueudet, B. Pepin, & L. Trouche (Hrsg.), From text to ‘lived’ resources. Mathematics curriculum materials and teacher development (S. 59–75). Springer. https://doi.org/10.1007/978-94-007-1966-8_4

  • Mariotti, M. A., & Montone, A. (2020). The potential synergy of digital and manipulative artefacts. Digital Experiences in Mathematics Education, 6, 109–122. https://doi.org/10.1007/s40751-020-00064-6

    Article  Google Scholar 

  • Mason, J., & Waywood, A., et al. (1996). The role of theory in mathematics education and research. In A. J. Bishop (Hrsg.), International handbook of mathematics education (S. 1055–1089). Kluwer. https://doi.org/10.1007/978-94-009-1465-0_29

    Google Scholar 

  • Nicolas, X., & Trgalova, J. (2019). A virtual environment dedicated to spatial geometry to help students to see better in space. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Hrsg.), Proceedings of the eleventh congress of the European Society for Research in Mathematics Education (S. 2884–2892). Freudenthal Institute, Utrecht University and ERME.

    Google Scholar 

  • Pape, H. (Ed. & übers.) (1998). Charles S. Peirce Phänomen und Logik der Zeichen. Suhrkamp.

    Google Scholar 

  • Peirce, C. S. (1965). Collected papers of Charles Sanders Peirce. (Ed. by C. Hartshorne, P. Weiss & A. Burks). Harvard University Press/Belknap Press.

    Google Scholar 

  • Puentedura, R. R. (2006). Transformation, technology, and education. http://www.hippasus.com/resources/tte/ (Accessed 16.06.2022)

  • Rabardel, P. (2002). People and technology: A cognitive approach to contemporary instruments. Université Paris 8. hal.archives-ouvertes.fr/hal-01020705

    Google Scholar 

  • Saldanha, L., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variation. In S. B. Berenson, & W. N. Coulombe (Hrsg.), Proceedings of the annual meeting of the psychology of mathematics education – North America (Vol 1, S. 298-304). Raleigh, NC: North Carolina State University.

    Google Scholar 

  • Swidan, O. (2019). Construction of the mathematical meaning of the function–derivative relationship using dynamic digital artifacts: A case study. Digital Experiences in Mathematics Education, 5, 203–222. https://doi.org/10.1007/s40751-019-00053-4

  • Tran, C., Smith, B., & Buschkuehl, M. (2017). Support of mathematical thinking through embodied cognition: Non-digital and digital approaches. Cognitive Research: Principles and Implications, 2(16), 1–18. DOI https://doi.org/10.1186/s41235-017-0053-8

  • Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.

    Article  Google Scholar 

  • Trouche, L. (2020a). Instrumentalization in mathematics education. In S. Lerman (Hrsg.), Encyclopedia of mathematics education (S. 392–403). Springer. https://doi.org/10.1007/978-3-030-15789-0_100013

    Chapter  Google Scholar 

  • Trouche, L. (2020b). Instrumentation in mathematics education. In S. Lerman (Hrsg.), Encyclopedia of mathematics education (S. 404–412). Springer. https://doi.org/10.1007/978-3-030-15789-0_80

    Chapter  Google Scholar 

  • Varela, F. J., Thompson, E. & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. MIT Press.

    Google Scholar 

Download references

Danksagung

Ich danke Jana Trgalova für ihren inspirierenden Vortrag auf der YESS 10, der mich dazu ermuntert hat, diesen Artikel mit dem semiotischen Potenzial zu beginnen.

DGS-Zeichnungen wurden mit GeoGebra erstellt (www.geogebra.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Bikner-Ahsbahs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bikner-Ahsbahs, A. (2022). Mathematiklehren und -lernen digital – Theorien, Modelle, Konzepte. In: Pinkernell, G., Reinhold, F., Schacht, F., Walter, D. (eds) Digitales Lehren und Lernen von Mathematik in der Schule. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65281-7_2

Download citation

Publish with us

Policies and ethics