Skip to main content

Life Science 4.0

Sensor Technology and Machine Learning in Motion Analysis

  • Chapter
  • First Online:
Handbook Industry 4.0
  • 2405 Accesses

Abstract

Methods, previously established for engineering systems, can be used in life science, or more precisely in biomechanics. Figure 1 shows this connection between applications in engineering and biology exemplarily for a braking disc and motion analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aljaaf AJ et al (2016) Evaluation of machine learning methods to predict knee loading from the movement of body segments. In: Proceedings of the International Joint Conference on Neural Networks, pp 5168–5173

    Google Scholar 

  • Ambrose AF, Paul G, Hausdorff JM (2013) Risk factors for falls among older adults: a review of the literature. Maturitas 75(1):51–61

    Article  Google Scholar 

  • Ardestani MM et al (2014) Human lower extremity joint moment prediction: a wavelet neural network approach. Expert Syst Appl 41(9):4422–4433

    Article  Google Scholar 

  • Bradley SM, Hernandez CR (2011) Geriatric assistive devices. Am Fam Physician 84(4):405–411

    Google Scholar 

  • Brandt A, Iwarsson S, StÃ¥hl A (2003) Satisfaction with rollators among community-living users: a follow-up study. Disabil Rehabil 25(7):343–353

    Article  Google Scholar 

  • Damm P et al (2017) Comparison of in vivo measured loads in knee, hip and spinal implants during level walking. J Biomech 51:128–132

    Article  Google Scholar 

  • David S et al (2017) Identification and risk estimation of movement strategies during cutting maneuvers. J Sci Med Sport 20(12):1075–1080

    Article  Google Scholar 

  • David S, Mundt M, Komnik I, Potthast W (2018) Understanding cutting maneuvers – the mechanical consequence of preparatory strategies and foot strike pattern. Hum Mov Sci 62(October):202–210

    Article  Google Scholar 

  • de Vries WHK, Veeger HEJ, Baten CTM, van der Helm FCT (2009) Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait Posture 29(4):535–541

    Article  Google Scholar 

  • Favre J, Hayoz M, Erhart-Hledik JC, Andriacchi TP (2012) A neural network model to predict knee adduction moment during walking based on ground reaction force and anthropometric measurements. J Biomech 45(4):692–698

    Article  Google Scholar 

  • Findlow AH et al (2008) Predicting lower limb joint kinematics using wearable motion sensors. Gait Posture 28(1):120–126

    Article  Google Scholar 

  • Goulermas JY et al (2005) Regression techniques for the prediction of lower limb kinematics. J Biomech Eng 127(6):1020

    Article  Google Scholar 

  • Goulermas JY et al (2008) An instance-based algorithm with auxiliary similarity information for the estimation of gait kinematics from wearable sensors. IEEE Trans Neural Netw 19(9):1574–1582

    Article  Google Scholar 

  • Hahn ME (2007) Feasibility of estimating isokinetic knee torque using a neural network model. J Biomech 40(5):1107–1114

    Article  Google Scholar 

  • Halilaj E et al (2018) Machine learning in human movement biomechanics: best practices, com-mon pitfalls, and new opportunities machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities. J Biomech

    Google Scholar 

  • Jie-han Ngoh K, Gouwanda D, Gopalai AA, Yu C (2018) Estimation of vertical ground reaction force during running using neural network model and uniaxial accelerometer. J Biomech 76:269–273

    Article  Google Scholar 

  • Johnson WR et al (2018) Predicting athlete ground reaction forces and moments from motion capture. Med Biol Eng Comput 56(10):1781–1792

    Article  Google Scholar 

  • Johnson WR, Alderson JA, Lloyd D, Mian AS (2019a) Predicting athlete ground reaction forces and moments from spatio-temporal driven CNN models. IEEE Trans Biomed Eng 66(3):689–694

    Article  Google Scholar 

  • Johnson WR, Mian A, Lloyd DG, Alderson JA (2019b) On-field player workload exposure and knee injury risk monitoring via deep learning. J Biomech 93:185–193

    Article  Google Scholar 

  • Johnson WR, Mian A, Robinson MA, Verheul J, Lloyd DG, Alderson JA (2020) Multidimensional ground reaction forces and moments from wearable sensor accelerations via deep learning. IEEE Trans Biomed Eng:1–12

    Google Scholar 

  • Kay RM et al (2000) The effect of preoperative gait analysis on orthopaedic decision making. Clin Orthop Relat Res 372:217–222

    Article  Google Scholar 

  • Kipp K, Giordanelli M, Geiser C (2018) Predicting net joint moments during a weightlifting exercise with a neural network model. J Biomech 74:225–229

    Article  Google Scholar 

  • Koeppe A, Bamer F, Hernandez Padilla CA, Markert B (2017) Neural network representation of a phase-field model for brittle fracture. Proc Appl Math Mech 17:253–254

    Article  Google Scholar 

  • Lee MJC et al (2013) Effects of different visual stimuli on postures and knee moments during sidestepping. Med Sci Sports Exerc 45(9):1740–1748

    Article  Google Scholar 

  • Liu Y et al (2009) Lower extremity joint torque predicted by using artificial neural network during vertical jump. J Biomech 42(7):906–911

    Article  Google Scholar 

  • Mundt M, Thomsen W, Bamer F, Markert B (2018a) Determination of gait parameters in real-world environment using low-cost inertial sensors. Proc Appl Math Mech 18:5–6

    Article  Google Scholar 

  • Mundt M, Thomsen W, David S et al (2018b) Assessment of the measurement accuracy of inertial sensors during different tasks of daily living. J Biomech

    Google Scholar 

  • Mundt M, David S, Koeppe A, Bamer F, Markert B, Potthast W (2019) Intelligent prediction of kinetic parameters during cutting manoeuvres. Med Biol Eng Comput 57(8):1833–1841

    Article  Google Scholar 

  • Mundt M, Koeppe A, Bamer F, David S, Markert B (2020a) Artificial neural networks in motion analysis — applications of unsupervised and heuristic feature selection techniques. Sensors 20:1–15

    Article  Google Scholar 

  • Mundt M, Koeppe A, David S, Bamer F, Potthast W, Markert B (2020b) Prediction of ground reaction force and joint moments based on optical motion capture data during gait. Med Eng Phys 86

    Google Scholar 

  • Mundt M, Koeppe A, David S, Witter T, Bamer F, Potthast W, Markert B (2020c) Estimation of gait mechanics based on simulated and measured IMU data using an artificial neural network. Front Bioeng Biotechnol 8(February):41

    Article  Google Scholar 

  • Osateerakun P et al (2018) P 037 – Prediction of moments from movements without force platforms using artificial neural networks: a pilot test. Gait Posture 65(xxxx):299–300

    Article  Google Scholar 

  • Reeves ND, Bowling FL (2011) Conservative biomechanical strategies for knee osteoarthritis. Nat Rev Rheumatol 7(2):113–122

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

    Article  Google Scholar 

  • Sabatini AM (2006) Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans Biomed Eng 53(7):1346–1356

    Article  Google Scholar 

  • Schülein S et al (2017) Instrumented gait analysis: a measure of gait improvement by a wheeled walker in hospitalized geriatric patients. J NeuroEng Rehabil 14(1):18

    Article  Google Scholar 

  • Schwartz MH, Trost JP, Wervey RA (2004) Measurement and management of errors in quantitative gait data. Gait Posture 20(2):196–203

    Article  Google Scholar 

  • Shahabpoor E, Pavic A (2017) Measurement of walking ground reactions in real-life environments: a systematic review of techniques and technologies. Sensors 17(9):2085

    Article  Google Scholar 

  • Sinclair J et al (2013) Three-dimensional kinematic comparison of treadmill and overground running. Sports Biomech 12(3):272–282

    Article  Google Scholar 

  • Wernick MN et al (2010) Drawing conclusions from medical images. IEEE Signal Process Mag (July):25–38

    Google Scholar 

  • Zimmermann T, Taetz B, Bleser G (2018) IMU-to-segment assignment and orientation alignment for the lower body using deep learning. Sensors (Switzerland)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Markert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mundt, M., Koeppe, A., Bamer, F., Markert, B. (2022). Life Science 4.0. In: Frenz, W. (eds) Handbook Industry 4.0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64448-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64448-5_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64447-8

  • Online ISBN: 978-3-662-64448-5

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics