Skip to main content

Refraktive und therapeutische Hornhautchirurgie

  • Chapter
  • First Online:
Optische Kohärenztomographie des vorderen Augenabschnitts

Zusammenfassung

Die Vorstellung, „sich die Augen lasern zu lassen“, um anschließend keine Sehhilfsmittel wie Brillen oder Kontaktlinsen mehr zum scharfen Sehen zu benötigen, ist für viele Menschen mit Sehfehler (und für einige Augenärzte) eines der faszinierendsten Kapitel der modernen Medizin. Die ersten Beschreibungen zur Modifizierung der Hornhautbrechkraft mittels Lasersystemen gehen auf Stephen Trockel im Jahr 1983 zurück. Erste Anwendungen dieser „Excimer“-Lasersysteme am Menschen wurden in Berlin in Form der photorefraktiven Keratektomie (PRK) von Theo Seiler 1987 durchgeführt. Im Rahmen moderner therapeutischer und refraktiver Hornhautchirurgie werden zurzeit zwei physikalisch unterschiedliche Lasersysteme eingesetzt, um die Hornhaut zu modellieren: Excimer- und Femtosekundenlaser. Die kontrollierte Anwendung von Excimer-generiertem UV-Licht der Wellenlänge 193 nm bei der therapeutischen und refraktiven Hornhautchirurgie ermöglicht eine sehr präzise Modulation von Hornhautgewebe. Die heutigen Excimerlaser emittieren das UV-Licht mit einer Frequenz von 500–1000 Hz. Mittels eines einzelnen Impulses findet dabei ein Gewebsabtrag von ca. 0,25 μm in der Tiefe und 0,6 mm2 in der Fläche statt. Sie werden daher zur Oberflächenbehandlung der Hornhaut eingesetzt, um primär entweder deren Form zu ändern (refraktive Behandlung von Hyperopie/Myopie/Astigmatismus) oder therapeutisch zum Abtragen von Narben und/oder Regularisierung der Hornhautoberfläche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Arranz-Marquez E, Katsanos A, Kozobolis VP, Konstas AGP, Teus MA (2019) A critical overview of the biological effects of mitomycin C application on the cornea following refractive surgery. Adv Ther 36(4):786–797

    Article  CAS  Google Scholar 

  • Baryla J, Pan YI, Hodge WG (2006) Long-term efficacy of phototherapeutic keratectomy on recurrent corneal erosion syndrome. Cornea 25(10):1150–1152

    Article  CAS  Google Scholar 

  • Binder PS, Anderson JA, Rock ME, Vrabec MP (1994) Human excimer laser keratectomy. Clinical and histopathologic correlations. Ophthalmology 101(6):979–989

    Article  CAS  Google Scholar 

  • Campos M, Nielsen S, Szerenyi K, Garbus JJ, McDonnell PJ (1993) Clinical follow-up of phototherapeutic keratectomy for treatment of corneal opacities. Am J Ophthalmol 115(4):433–440

    Article  CAS  Google Scholar 

  • Chow AM, Yiu EP, Hui MK, Ho CK (2005) Shallow ablations in phototherapeutic keratectomy: long-term follow-up. J Cataract Refract Surg 31(11):2133–2136

    Article  Google Scholar 

  • Cummings AB, Mascharka N (2010) Outcomes after topography-based LASIK and LASEK with the wavelight oculyzer and topolyzer platforms. J Refract Surg 26(7):478–485

    Article  Google Scholar 

  • Das S, Langenbucher A, Seitz B (2005) Excimer laser phototherapeutic keratectomy for granular and lattice corneal dystrophy: a comparative study. J Refract Surg 21(6):727–731

    Article  Google Scholar 

  • Dighiero P, Boudraa R, Ellies P, Saragoussi JJ, Legeais JM, Renard G (2000) [Therapeutic photokeratectomy for the treatment of band keratopathy]. J Fr Ophtalmol 23(4):345–349

    Google Scholar 

  • Dinh R, Rapuano CJ, Cohen EJ, Laibson PR (1999) Recurrence of corneal dystrophy after excimer laser phototherapeutic keratectomy. Ophthalmology 106(8):1490–1497

    Article  CAS  Google Scholar 

  • Eschstruth P, Sekundo W (2006) [Recurrent corneal erosion. Different treatment options with the excimer laser with emphasis on aggressive PTK]. Ophthalmologe 103(7):570–575

    Google Scholar 

  • Fagerholm P (2003) Phototherapeutic keratectomy: 12 years of experience. Acta Ophthalmol Scand 81(1):19–32

    Article  Google Scholar 

  • Fagerholm P, Fitzsimmons TD, Orndahl M, Ohman L, Tengroth B (1993) Phototherapeutic keratectomy: long-term results in 166 eyes. Refract Corneal Surg 9(2 Suppl):S76–S81

    CAS  Google Scholar 

  • Fagerholm P, Ohman L, Orndahl M (1994) Phototherapeutic keratectomy in herpes simplex keratitis. Clinical results in 20 patients. Acta Ophthalmol 72(4):457–460

    Article  CAS  Google Scholar 

  • Franco J, White CA, Kruh JN (2020) Analysis of compensatory corneal epithelial thickness changes in keratoconus using corneal tomography. Cornea 39(3):298–302

    Article  Google Scholar 

  • Geerling G, Sekundo W (2006) [Phototherapeutic keratectomy. Undesirable effects, complications, and preventive strategies]. Ophthalmologe 103(7):576–582

    Google Scholar 

  • Ginis HS, Katsanevaki VJ, Pallikaris IG (2003) Influence of ablation parameters on refractive changes after phototherapeutic keratectomy. J Refract Surg 19(4):443–448

    Article  Google Scholar 

  • Hafner A, Langenbucher A, Seitz B (2005) Long-term results of phototherapeutic keratectomy with 193-nm excimer laser for macular corneal dystrophy. Am J Ophthalmol 140(3):392–396

    Article  Google Scholar 

  • Hahn TW, Sah WJ, Kim JH (1993) Phototherapeutic keratectomy in nine eyes with superficial corneal diseases. Refract Corneal Surg 9(2 Suppl):S115–S118

    CAS  Google Scholar 

  • Hashemi H, Taheri SM, Fotouhi A, Kheiltash A (2004) Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy in high myopia: a prospective clinical study. BMC Ophthalmol 4:12

    Article  Google Scholar 

  • Holzer MP, Auffarth GU, Specht H, Kruse FE (2005) Combination of transepithelial phototherapeutic keratectomy and autologous serum eyedrops for treatment of recurrent corneal erosions. J Cataract Refract Surg 31(8):1603–1606

    Article  Google Scholar 

  • Kanellopoulos AJ (2019) Ten-year outcomes of progressive keratoconus management with the Athens protocol (topography-guided partial-refraction PRK combined with CXL). J Refract Surg 35(8):478–483

    Article  Google Scholar 

  • Kanellopoulos AJ, Binder PS (2007) Collagen cross-linking (CCL) with sequential topography-guided PRK: a temporizing alternative for keratoconus to penetrating keratoplasty. Cornea 26(7):891–895

    Article  Google Scholar 

  • Kanellopoulos AJ, Binder PS (2011) Management of corneal ectasia after LASIK with combined, same-day, topography-guided partial transepithelial PRK and collagen cross-linking: the Athens protocol. J Refract Surg 27(5):323–331

    Article  Google Scholar 

  • Kapadia MS, Wilson SE (1998) Transepithelial photorefractive keratectomy for treatment of thin flaps or caps after complicated laser in situ keratomileusis. Am J Ophthalmol 126(6):827–829

    Article  CAS  Google Scholar 

  • Khaireddin R, Katz T, Baile RB, Richard G, Linke SJ (2011) Superficial keratectomy, PTK, and mitomycin C as a combined treatment option for Salzmann’s nodular degeneration: a follow-up of eight eyes. Graefes Arch Clin Exp Ophthalmol 249(8):1211–1215

    Article  CAS  Google Scholar 

  • Kim TI, Pak JH, Chae JB, Kim EK, Tchah H (2006) Mitomycin C inhibits recurrent Avellino dystrophy after phototherapeutic keratectomy. Cornea 25(2):220–223

    Article  Google Scholar 

  • Knorz MC, Jendritza B (2000) Topographically-guided laser in situ keratomileusis to treat corneal irregularities. Ophthalmology 107(6):1138–1143

    Article  CAS  Google Scholar 

  • Kornmehl EW, Steinert RF, Puliafito CA (1991) A comparative study of masking fluids for excimer laser phototherapeutic keratectomy. Arch Ophthalmol 109(6):860–863

    Article  CAS  Google Scholar 

  • Krueger RR (2006) Corneal topography vs ocular wavefront sensing in the retreatment of highly aberrated post surgical eyes. J Refract Surg 22(4):328–330

    Article  Google Scholar 

  • Li Y, Yokogawa H, Tang M, Chamberlain W, Zhang X, Huang D (2017) Guiding flying-spot laser transepithelial phototherapeutic keratectomy with optical coherence tomography. J Cataract Refract Surg 43(4):525–536

    Article  Google Scholar 

  • Lin DT, Holland SR, Rocha KM, Krueger RR (2008) Method for optimizing topography-guided ablation of highly aberrated eyes with the ALLEGRETTO WAVE excimer laser. J Refract Surg 24(4):S439–S445

    Google Scholar 

  • Lin DT, Holland S, Tan JC, Moloney G (2012) Clinical results of topography-based customized ablations in highly aberrated eyes and keratoconus/ectasia with cross-linking. J Refract Surg 28(11):S841–S848

    Article  Google Scholar 

  • Linke S, Kugu C, Richard G, Katz T (2009) An in vivo confocal microscopic analysis of Salzmann’s nodular degeneration: pre- and post-surgical intervention. Acta Ophthalmol 87(2):233–234

    Article  Google Scholar 

  • Linke SJ, Steinberg J, Katz T (2013) [Therapeutic excimer laser treatment of the cornea]. Klin Monatsbl Augenheilkd 230(6):595–603

    Google Scholar 

  • Lisch W, Seitz B (2011) [New international classification of corneal dystrophies (CD)]. Ophthalmologe 108(9):883–896; quiz 97

    Google Scholar 

  • Majmudar PA, Forstot SL, Dennis RF et al (2000) Topical mitomycin-C for subepithelial fibrosis after refractive corneal surgery. Ophthalmology 107(1):89–94

    Article  CAS  Google Scholar 

  • Maloney RK, Thompson V, Ghiselli G, Durrie D, Waring GO 3rd, O’Connell M (1996) A prospective multicenter trial of excimer laser phototherapeutic keratectomy for corneal vision loss. The Summit Phototherapeutic Keratectomy Study Group. Am J Ophthalmol 122(2):149–160

    Article  CAS  Google Scholar 

  • Miller A, Solomon R, Bloom A, Palmer C, Perry HD, Donnenfeld ED (2004) Prevention of recurrent Reis-Bucklers dystrophy following excimer laser phototherapeutic keratectomy with topical mitomycin C. Cornea 23(7):732–735

    Article  Google Scholar 

  • Nakamura T, Kataoka T, Kojima T, Yoshida Y, Sugiyama Y (2018) Refractive outcomes after phototherapeutic refractive keratectomy for granular corneal dystrophy. Cornea 37(5):548–553

    Article  Google Scholar 

  • O’Brart DP, Gartry DS, Lohmann CP, Patmore AL, Kerr Muir MG, Marshall J (1993) Treatment of band keratopathy by excimer laser phototherapeutic keratectomy: surgical techniques and long term follow up. Br J Ophthalmol 77(11):702–708

    Article  Google Scholar 

  • Ohman L, Fagerholm P (1998) The influence of excimer laser ablation on recurrent corneal erosions: a prospective randomized study. Cornea 17(4):349–352

    Article  CAS  Google Scholar 

  • Ohno K (2011) Customized photorefractive keratectomy for the correction of regular and irregular astigmatism after penetrating keratoplasty. Cornea 30(Suppl 1):S41–S44

    Article  Google Scholar 

  • Orndahl MJ, Fagerholm PP (1998a) Phototherapeutic keratectomy for map-dot-fingerprint corneal dystrophy. Cornea 17(6):595–599

    Article  CAS  Google Scholar 

  • Orndahl MJ, Fagerholm PP (1998b) Treatment of corneal dystrophies with phototherapeutic keratectomy. J Refract Surg 14(2):129–135

    Article  CAS  Google Scholar 

  • Pasquali T, Krueger R (2012) Topography-guided laser refractive surgery. Curr Opin Ophthalmol 23(4):264–268

    Article  Google Scholar 

  • Quentin CD, Tondrow M, Vogel M (1999) [Phototherapeutic keratectomy (PTK) after epidemic keratoconjunctivitis]. Ophthalmologe 96(2):92–96

    Google Scholar 

  • Rapuano CJ (1997) Excimer laser phototherapeutic keratectomy: long-term results and practical considerations. Cornea 16(2):151–157

    Article  CAS  Google Scholar 

  • Raviv T, Majmudar PA, Dennis RF, Epstein RJ (2000) Mytomycin-C for post-PRK corneal haze. J Cataract Refract Surg 26(8):1105–1106

    Article  CAS  Google Scholar 

  • Schipper I, Suppelt C, Gebbers JO (1997) Mitomycin C reduces scar formation after excimer laser (193 nm) photorefractive keratectomy in rabbits. Eye (Lond) 11(Pt 5):649–655

    Article  Google Scholar 

  • Seiler T, Bende T, Wollensak J (1987) [Correction of astigmatism with the Excimer laser]. Klin Monatsbl Augenheilkd 191(3):179–183

    Google Scholar 

  • Seitz B, Lisch W (2011) Stage-related therapy of corneal dystrophies. Dev Ophthalmol 48:116–153

    Article  Google Scholar 

  • Seitz B, Langenbucher A, Kus MM, Harrer M (1998) Experimental correction of irregular corneal astigmatism using topography-based flying-spot-mode excimer laser photoablation. Am J Ophthalmol 125(2):252–256

    Article  CAS  Google Scholar 

  • Sekundo W, Geerling G (2006) [Phototherapeutic keratectomy. Basic principles, techniques and indications]. Ophthalmologe 103(7):563–569

    Google Scholar 

  • Shah RA, Wilson SE (2010) Use of mitomycin-C for phototherapeutic keratectomy and photorefractive keratectomy surgery. Curr Opin Ophthalmol 21(4):269–273

    Article  Google Scholar 

  • Shalaby A, Kaye GB, Gimbel HV (2009) Mitomycin C in photorefractive keratectomy. J Refract Surg 25(1 Suppl):S93–S97

    Google Scholar 

  • Steinert RF, Ashrafzadeh A, Hersh PS (2004) Results of phototherapeutic keratectomy in the management of flap striae after LASIK. Ophthalmology 111(4):740–746

    Article  Google Scholar 

  • Stewart OG, Morrell AJ (2003) Management of band keratopathy with excimer phototherapeutic keratectomy: visual, refractive, and symptomatic outcome. Eye (Lond) 17(2):233–237

    Article  CAS  Google Scholar 

  • Toda I, Yamamoto T, Ito M, Hori-Komai Y, Tsubota K (2007) Topography-guided ablation for treatment of patients with irregular astigmatism. J Refract Surg 23(2):118–125

    Article  Google Scholar 

  • Trokel SL, Srinivasan R, Braren B (1983) Excimer laser surgery of the cornea. Am J Ophthalmol 96(6):710–715

    Article  CAS  Google Scholar 

  • Ventura BV, Moraes HV Jr, Kara-Junior N, Santhiago MR (2012) Role of optical coherence tomography on corneal surface laser ablation. J Ophthalmol 2012:676740

    Article  Google Scholar 

  • Vinciguerra P, Munoz MI, Camesasca FI, Grizzi F, Roberts C (2005) Long-term follow-up of ultrathin corneas after surface retreatment with phototherapeutic keratectomy. J Cataract Refract Surg 31(1):82–87

    Article  Google Scholar 

  • Wang Y, Ma J, Zhang L et al (2019) Postoperative corneal complications in small incision lenticule extraction: long-term study. J Refract Surg 35(3):146–152

    Article  CAS  Google Scholar 

  • Wilson SE, Marino GK, Medeiros CS, Santhiago MR (2017) Phototherapeutic keratectomy: science and art. J Refract Surg 33(3):203–210

    Article  Google Scholar 

  • Zalentein WN, Holopainen JM, Tervo TM (2007) Phototherapeutic keratectomy for epithelial irregular astigmatism: an emphasis on map-dot-fingerprint degeneration. J Refract Surg 23(1):50–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan J. Linke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Linke, S.J., Steinberg, J. (2022). Refraktive und therapeutische Hornhautchirurgie. In: Heindl, L.M., Siebelmann, S. (eds) Optische Kohärenztomographie des vorderen Augenabschnitts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63273-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63273-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63272-7

  • Online ISBN: 978-3-662-63273-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics