Skip to main content

Blickverhalten beim Lernen und Problemlösen mit Graphen – Ein Literaturüberblick bis 2020

  • Chapter
  • First Online:
Eye-Tracking in der Mathematik- und Naturwissenschaftsdidaktik

Zusammenfassung

Graphen nehmen eine interdisziplinär zentrale Rolle bei der Darstellung von Messwerten und der Visualisierung mathematischer Funktionen ein. Durch ihre vielseitigen Einsatzmöglichkeiten und unterschiedlichen Komplexitätsgrade werden sie sowohl in den Sekundarstufen und der universitären Lehre als auch in wissenschaftlichen Publikationen und im öffentlichen Leben intensiv genutzt. Daher ist ein Verständnis dieser Repräsentationsform von zentraler Bedeutung. Als bewährte Methode zur Erfassung der kognitiven Informationsextraktion und -verarbeitung hat sich in den letzten 20 Jahren zunehmend die Verfolgung von Blickbewegungen, das Eye-Tracking, in der Lehr-/Lernforschung etabliert. Im Rahmen der Literaturrecherche wurden 27 Artikel in nationalen und internationalen Zeitschriften identifiziert, die das Blickverhalten beim Lernen und Problemlösen mit Graphen thematisieren. Diese Artikel wurden hinsichtlich dreier Schwerpunkte ausgewertet: 1) das Blickverhalten bei Graphen in Kombination mit anderen Repräsentationen, 2) den Einfluss des Darstellungstyps und des Kontexts und 3) die Einflüsse weiterer Charakteristika beim Lernen und Problemlösen mit Graphen. Im Vergleich zu früheren Überblicksartikeln stellt dieses Kapitel erstmalig einen Überblick zu Artikeln, welche das Blickverhalten bei Graphen untersucht haben, dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Neben den untersuchten Formen von Goldberg und Helfman (2011) sind natürlich noch weitere Darstellungsformen von Diagrammen denkbar. Dennoch beziehen wir uns hier auf diese eingeschränkte Auswahl, da sie in der Eye-Tracking Community untersucht wurden.

Literatur

  • Alemdag, E., & Cagiltay, K. (2018). A systematic review of eye tracking research on multimedia learning. Computers & Education, 125, 413–428.

    Article  Google Scholar 

  • Andrá, C., Lindström, P., Arzarello, F., Holmqvist, K., Robutti, O., & Sabena, C. (2015). Reading mathematics representations: An eye-tracking study. International Journal of Science and Mathematics Education, 13(2), 237–259.

    Article  ADS  Google Scholar 

  • Atkins, R. M., & McNeal, K. S. (2018). Exploring differences among student populations during climate graph reading tasks: An eye tracking study. Journal of Astronomy & Earth Sciences Education (JAESE), 5(2), 85–114.

    Article  ADS  Google Scholar 

  • Beichner, R. J. (1993). Misunderstandings of Kinematics Graphs. In The Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics, Misconceptions Trust: Ithaca, NY.

    Google Scholar 

  • Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750–762.

    Google Scholar 

  • Brand-Gruwel, S., Wopereis, I., & Walraven, A. (2009). A descriptive model of information problem solving while using internet. Computers & Education, 53(4), 1207–1217.

    Article  Google Scholar 

  • Brückner, S., Zlatkin-Troitschanskaia, O., Küchemann, S., Klein, P., & Kuhn, J. (2020). Changes in students’ understanding of and visual attention on digitally represented graphs across two domains in higher education: A postreplication study. Frontiers in Psychology, 11, 2090.

    Article  Google Scholar 

  • Cowie, B., & Cooper, B. (2017). Exploring the challenge of developing student teacher data literacy. Assessment in Education: Principles, Policy & Practice, 24(2), 147–163.

    Google Scholar 

  • Dorsch, Lexikon der Psychologie. (2021). Repräsentation. Abgerufen von https://dorsch.hogrefe.com/stichwort/repraesentation.

  • Duden. (2021). Diagramm. Abgerufen von https://www.duden.de/rechtschreibung/Diagramm.

  • Gal, I. (2002). Adults’ statistical literacy: Meanings, components, responsibilities. International Statistical Review, 70(1), 1–25.

    Google Scholar 

  • Gegenfurtner, A., Lehtinen, E., & Säljö, R. (2011). Expertise differences in the comprehension of visualizations: A meta-analysis of eye-tracking research in professional domains. Educational Psychology Review, 23(4), 523–552.

    Article  Google Scholar 

  • Glazer, N. (2011). Challenges with graph interpretation: A review of the literature. Studies in Science Education, 47(2), 183–210.

    Google Scholar 

  • Goldberg, J., & Helfman, J. (2011). Eye tracking for visualization evaluation: Reading values on linear versus radial graphs. Information Visualization, 10(3), 182–195.

    Google Scholar 

  • Harsh, J. A., Campillo, M., Murray, C., Myers, C., Nguyen, J., & Maltese, A. V. (2019). “Seeing” Data like an expert: An eye-tracking study using graphical data representations. CBE – Life Sciences Education, 18(3), ar32.

    Google Scholar 

  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(3), 141–158.

    Google Scholar 

  • Ho, H. N. J., Tsai, M. J., Wang, C. Y., & Tsai, C. C. (2014). Prior knowledge and online inquiry-based science reading: Evidence from eye tracking. International Journal of Science and Mathematics Education, 12(3), 525–554.

    Google Scholar 

  • Huang, P. S., & Chen, H. C. (2016). Gender differences in eye movements in solving text-and-diagram science problems. International Journal of Science and Mathematics Education, 14(2), 327–346.

    Article  ADS  Google Scholar 

  • Kekule, M. (2014). Students’ approaches when dealing with kinematics graphs explored by eye-tracking research method. In Proceedings of the Frontiers in Mathematics and Science Education Research Conference, FISER (S. 108–117).

    Google Scholar 

  • Kim, S., Lombardino, L. J., Cowles, W., & Altmann, L. J. (2014). Investigating graph comprehension in students with dyslexia: An eye tracking study. Research in Developmental Disabilities, 35(7), 1609–1622.

    Google Scholar 

  • Klein, P., Küchemann, S., Brückner, S., Zlatkin-Troitschanskaia, O., & Kuhn, J. (2019). Student understanding of graph slope and area under a curve: A replication study comparing first-year physics and economics students. Physical Review Physics Education Research, 15(2), 020116.

    Google Scholar 

  • Klein, P., Lichtenberger, A., Küchemann, S., Becker, S., Kekule, M., Viiri, J., & Kuhn, J. (2020). Visual attention while solving the test of understanding graphs in kinematics: An eye-tracking analysis. European Journal of Physics, 41(2), 025701.

    Google Scholar 

  • Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549–579.

    Google Scholar 

  • Küchemann, S., Klein, P. & Kuhn, J. (2019). Best of Germany: VorleXung: Cross-linking Recitation Sessions and Physics Lectures using eXperiment-based Video-Analysis Tasks. In J. Theo Bastiaens (Ed.), Proceedings of EdMedia + Innovate Learning (pp. 152-157). Amsterdam, Netherlands: Association for the Advancement of Computing in Education (AACE).

    Google Scholar 

  • Küchemann, S., Klein, P., Becker, S., Kumari, N., & Kuhn, J. (2020a). Classification of Students’ conceptual understanding in STEM education using their visual attention distributions: A comparison of three machine-learning approaches. CSEDU, 1, 36–46). https://doi.org/10.5220/0009359400360046.

  • Küchemann, S., Klein, P., Fouckhardt, H., Gröber, S., & Kuhn, J. (2020b). Students’ understanding of non-inertial frames of reference. Physical Review Physics Education Research, 16(1), 010112.

    Google Scholar 

  • Lai, M. L., Tsai, M. J., Yang, F. Y., Hsu, C. Y., Liu, T. C., Lee, S. W. Y., & Tsai, C. C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 10, 90–115.

    Google Scholar 

  • Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1–64.

    Google Scholar 

  • Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In Martin, J. R. & R. Veel (Hrsg.), Reading Science (S. 87–113). Routledge, New York, NY.

    Google Scholar 

  • Lilienthal, A. J., & Schindler, M. (2019). Current trends in eye tracking research in mathematics education: A PME literature review: A PME survey. In Annual Meeting of the International Group for the Psychology of Mathematics Education (PME-43), Pretoria, South Africa, July 7–12, 2019 (Bd. 4, S. 62–72).

    Google Scholar 

  • Madsen, A. M., Larson, A. M., Loschky, L. C., & Rebello, N. S. (2012). Differences in visual attention between those who correctly and incorrectly answer physics problems. Physical Review Special Topics-Physics Education Research, 8(1), 010122.

    Google Scholar 

  • Madsen, A., Rouinfar, A., Larson, A. M., Loschky, L. C., & Rebello, N. S. (2013). Can short duration visual cues influence students’ reasoning and eye movements in physics problems? Physical Review Special Topics – Physics Education Research, 9(2), 020104.

    Google Scholar 

  • Matzen, L. E., Haass, M. J., Divis, K. M., Wang, Z., & Wilson, A. T. (2017). Data visualization saliency model: A tool for evaluating abstract data visualizations. IEEE Transactions on Visualization and Computer Graphics, 24(1), 563–573.

    Google Scholar 

  • McDermott, L. C., Rosenquist, M. L., & Van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503–513.

    Article  ADS  Google Scholar 

  • Murray, J. (2003). Contemporary literacy: Essential. Multimedia Schools, 10(2), 15–18.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • Okan, Y., Galesic, M., & Garcia-Retamero, R. (2016). How people with low and high graph literacy process health graphs: Evidence from eye-tracking. Journal of Behavioral Decision Making, 29(2–3), 271–294.

    Article  Google Scholar 

  • Peebles, D., & Cheng, P. C. H. (2003). Modeling the effect of task and graphical representation on response latency in a graph reading task. Human Factors, 45(1), 28–46.

    Article  Google Scholar 

  • Polatsek, P., Waldner, M., Viola, I., Kapec, P., & Benesova, W. (2018). Exploring visual attention and saliency modeling for task-based visual analysis. Computers & Graphics, 72, 26–38.

    Article  Google Scholar 

  • Rau, M. A. (2017). Conditions for the effectiveness of multiple visual representations in enhancing STEM learning. Educational Psychology Review, 29(4), 717–761.

    Article  Google Scholar 

  • Roth, W. M. (2003). Toward an anthropology of graphing. In Toward an Anthropology of Graphing (S. 1–21). Dordrecht: Springer.

    Google Scholar 

  • Rouinfar, A., Agra, E., Larson, A. M., Rebello, N. S., & Loschky, L. C. (2014). Linking attentional processes and conceptual problem solving: Visual cues facilitate the automaticity of extracting relevant information from diagrams. Frontiers in Psychology, 5, 1094.

    Google Scholar 

  • Scheiter, K., Fillisch, B., Krebs, M. C., Leber, J., Ploetzner, R., Renkl, A., ... & Zimmermann, G. (2017). How to design adaptive information environments to support self-regulated learning with Multimedia. In Informational Environments (S. 203–223). Springer.

    Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156.

    Google Scholar 

  • Strobel, B. (2018). Der Einfluss visueller Gestaltungsmerkmale auf kognitive Prozesse bei der Bearbeitung von Aufgaben mit Diagrammen, Dissertation. Entnommen aus dem Open Access Repository MACAU (urn:nbn:de:gbv:8-diss-242652).

    Google Scholar 

  • Strobel, B., Sass, S., Lindner, M. A., & Köller, O. (2016). Do graph readers prefer the graph type most suited to a given task? Insights from eye tracking. Journal of Eye Movement Research, 9(4), 1–15.

    Article  Google Scholar 

  • Strobel, B., Lindner, M. A., Saß, S., & Köller, O. (2018). Task-irrelevant data impair processing of graph reading tasks: An eye tracking study. Learning and Instruction, 55, 139–147.

    Article  Google Scholar 

  • Strobel, B., Grund, S., & Lindner, M. A. (2019). Do seductive details do their damage in the context of graph comprehension? Insights from eye movements. Applied Cognitive Psychology, 33(1), 95–108.

    Article  Google Scholar 

  • Strohmaier, A. R., MacKay, K. J., Obersteiner, A., & Reiss, K. M. (2020). Eye-tracking methodology in mathematics education research: A systematic literature review. Educational Studies in Mathematics, 104, 147–200.

    Article  Google Scholar 

  • Susac, A., Bubic, A., Kazotti, E., Planinic, M., & Palmovic, M. (2018). Student understanding of graph slope and area under a graph: A comparison of physics and nonphysics students. Physical Review Physics Education Research, 14(2), 020109.

    Google Scholar 

  • Tai, R. H., Loehr, J. F., & Brigham, F. J. (2006). An exploration of the use of eye-gaze tracking to study problem-solving on standardized science assessments. International Journal of Research & Method in Education, 29(2), 185–208.

    Google Scholar 

  • Toker, D., Conati, C., Steichen, B., & Carenini, G. (2013, April). Individual user characteristics and information visualization: Connecting the dots through eye tracking. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (S. 295–304).

    Google Scholar 

  • Vila, J., & Gomez, Y. (2016). Extracting business information from graphs: An eye tracking experiment. Journal of Business Research, 69(5), 1741–1746.

    Article  Google Scholar 

  • Wineburg, S., Breakstone, J., McGrew, S., and Ortega, T. (2018). Why google can’t save us: the challenges of our post-Gutenberg moment. In O. Zlatkin-Troitschanskaia, G. Wittum, & A. Dengel (Hrsg.), Positive Learning in the Age of Information (PLATO): A Blessing or a Curse? (S. 221–228). Springer. https://doi.org/10.1007/978-3-658-19567-0_13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Küchemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Küchemann, S. et al. (2022). Blickverhalten beim Lernen und Problemlösen mit Graphen – Ein Literaturüberblick bis 2020. In: Klein, P., Graulich, N., Kuhn, J., Schindler, M. (eds) Eye-Tracking in der Mathematik- und Naturwissenschaftsdidaktik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63214-7_11

Download citation

Publish with us

Policies and ethics