Skip to main content

Why Reductionism does not Work

  • Chapter
  • First Online:
Wider den Reduktionismus
  • 523 Accesses

Zusammenfassung

Kurt Gödel opposed the reductionist viewpoint of logical positivism. The arguments I give below show he is correct. The reductionist explanation he opposed is doomed to failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I do not enter here into the debate on the nature of computation (Fresco 2012); the above statement is true whatever view one takes.

  2. 2.

    This is required in order that a Universal Turing Machine can function.

  3. 3.

    I am discounting Many Worlds and Hidden Variable theories because they simply have no cash value for the physicist doing experiments in her laboratory. They do not predict, on the basis of the initial data, the outcomes she will measure in specific individual cases.

Literatur

  • Abelson, H., & Sussman, J. S. (1990). Structure and interpretation of computer programs. Cambridge: MIT Press.

    Google Scholar 

  • Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers, principles, techniques, and tools. Reading: Addison Wesley.

    Google Scholar 

  • Albert, D. (2003). Time and chance. Cambridge: Harvard University Press.

    Google Scholar 

  • Alon, U. (2006). An introduction to systems biology: Design principles of biological circuits. London: Chapman and Hall/CRC.

    Google Scholar 

  • Anderson, P. W. (1972). More is different. Science, 177, 393–396.

    Article  Google Scholar 

  • Anthony, L. M. (2008). Multiple realisation: Keeping it real. In J. Hohwy & J. Kallestrup (Eds.), Being reduced (pp. 164–175). Oxford: Oxford University Press.

    Google Scholar 

  • Aoki, S. K., Lillacci, G., Gupta, A., Baumschlager, A., Schweingruber, D., & Khammash, M. (2019). A universal biomolecular integral feedback controller for robust perfect adaptation. Nature, 570, 533–537.

    Article  Google Scholar 

  • Atmanspacher, H., & beim Graben, P. (2009). Contextual emergence. Scholarpedia, 4(3), 7997.

    Google Scholar 

  • Bass, J., & Lazar, M. A. (2016). Circadian time signatures of fitness and disease. Science, 354, 994–999.

    Article  Google Scholar 

  • Bathgate, K. E., Bagley, J. R., Jo, E., Talmadge, R. J., Tobias, I. S., Brown, L. E., et al. (2018). Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits. European Journal of Applied Physiology, 118, 2097–2110.

    Article  Google Scholar 

  • Batterman, R. W. (2018). Autonomy of theories: An explanatory problem. Nous, 52, 858–873.

    Article  Google Scholar 

  • Bechtel, W. (2018). The importance of constraints and control in biological mechanisms: Insights from cancer research. Philosophy of Science, 85, 573–593.

    Article  Google Scholar 

  • Bedau, M. (2002). Downward causation and the autonomy of weak emergence. Principia: An International Journal of Epistemology, 6, 5–50.

    Google Scholar 

  • Berridge, M. (2014). Cell signalling biology. London: Portland Press.

    Google Scholar 

  • Bickle, J. (2019). Multiple realizability. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy.

    Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Blachowicz, J. (2013). The constraint interpretation of physical emergence. Journal for General Philosophy of Science, 44, 21–40.

    Article  Google Scholar 

  • Booch, G. (2006). Object oriented analysis and design with application. Boston: Pearson Education.

    Google Scholar 

  • Boogerd, F. C., Bruggeman, F. J., Richardson, R. C., Stephan, A., & Westerhoff, H. V. (2005). Emergence and its place in nature: A case study of biochemical networks. Synthese, 145, 131–164.

    Article  Google Scholar 

  • Briat, C., Gupta, A., & Khammash, M. (2019). Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Systems, 2, 15–26.

    Article  Google Scholar 

  • Bronowski, J. (2011). The ascent of man. New York: Random House.

    Google Scholar 

  • Brooks, B. R., et al. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30, 1545–1614.

    Article  Google Scholar 

  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. A., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4, 187–217.

    Article  Google Scholar 

  • Campbell, D. T. (1974). ‘Downward causation’ in hierarchically organised biological systems. In F. J. Ayala & T. Dobzhansky (Eds.), Studies in the Philosophy of Biology (pp. 79–186). London: Macmillan.

    Google Scholar 

  • Campbell, N. A., & Reece, J. B. (2005). Biology. San Francisco: Benjamin Cummings.

    Google Scholar 

  • Carroll, S. B. (2005). The new science of Evo Devo—Endless forms most beautiful. New York: Norton.

    Google Scholar 

  • Catterall, W. A. (1995). Structure and function of voltage-gated ion channels. Annual Review of Biochemistry, 64, 493–531.

    Article  Google Scholar 

  • Chalmers, D. J. (2006). Strong and weak emergence. In P. Clayton & P. C. W. Davies (Eds.), The re-emergence of emergence (pp. 244–256). Oxford: Oxford University Press.

    Google Scholar 

  • Changeux, J. P., & Connes, A. (1998). Conversations on mind, matter, and mathematics. Princeton University Press.

    Google Scholar 

  • Churchland, P. M. (2013). Plato’s camera: How the physical brain captures a landscape of abstract universals. Cambridge: MIT Press.

    Google Scholar 

  • D’Souza, A., Pearman, C. M., Wang, Y., Nakao, S., Logantha, S. J. R., Cox, C., et al. (2017). Targeting miR-423-5p reverses exercise training-induced HCN4 channel remodeling and sinus bradycardia. Circulation Research, 121(9), 1058–1068.

    Article  Google Scholar 

  • Deacon, T. W. (1998). The symbolic species: The co-evolution of language and the brain. New York: Norton.

    Google Scholar 

  • Dennett, D. C. (1996). Darwin’s dangerous idea. London: Penguin.

    Google Scholar 

  • Deweerdt, S. (2017). Sea change. Nature, 550, S54–S58.

    Google Scholar 

  • Donald, M. (2002). A mind so rare. Norton.

    Google Scholar 

  • Drossel, B., & Ellis, G. F. R. (2018). Contextual Wavefunction Collapse: An integrated theory of quantum measurement. New Journal of Physics, 20, 113025.

    Google Scholar 

  • Drossel, B. (2019). Strong emergence in condensed matter physics. preprint. arXiv:1909.01134.

  • Dunbar, R. I. (2003). The social brain: Mind, language, and society in evolutionary perspective. Annual Review of Anthropology, 32, 163–181.

    Article  Google Scholar 

  • Eddington, A. S. (1927). The nature of the physicalworld. Cambridge: Cambridge University Press (reprinted 2012).

    Google Scholar 

  • Ellis, G. F. R. (2005). Physics, complexity and causality. Nature, 435, 743.

    Google Scholar 

  • Ellis, G. F. R. (2014). The evolving block universe and the meshing together of times. Annals of the New York Academy of Sciences, 1326, 26–41. arXiv: 1407.7243.

    Article  Google Scholar 

  • Ellis, G. F. R., & Drossel, B. (2019). How downward causation occurs in digital computes. Foundations of Physics, 49, 1253–1277.

    Article  Google Scholar 

  • Ellis, G. F. R., & Drossel, B. (2020). Emergence of time. Foundations of Physics, 50, 161–190.

    Article  Google Scholar 

  • Ellis, G. F. R. & Kopel, J. (2018). The dynamical emergence of biology from physics: Branching causation via biomolecules. Frontiers in Physiology, 9, 1966.

    Google Scholar 

  • Ellis, G. F. R., & Solms, M. (2017). Beyond evolutionary psychology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Feldman, G. (2019). Why neutrons and protons are modified inside nuclei. Nature, 566, 332–333.

    Article  Google Scholar 

  • Fink, M., & Noble, D. (2008). Noble model. Scholarpedia, 3(2), 1803.

    Article  Google Scholar 

  • Franklin, A., & Knox, E. (2018). Emergence without limits: The case of phonons. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 64, 68–78.

    Article  Google Scholar 

  • Fresco, N. (2012). The explanatory role of computation in cognitive science. Minds and Machines, 22, 353–380.

    Article  Google Scholar 

  • Frith, C. (2013). Making up the mind: How the brain creates our mental world. Hoboken: Wiley.

    Google Scholar 

  • Ghirardi, G. (2007). Sneaking a look at god’s cards: Unraveling the mysteries of quantum mechanics. Cambridge: Princeton University Press.

    Google Scholar 

  • Gibb, S., Hendry, R. F., & Lancaster, T. (Eds.). (2019). The Routledge handbook of emergence. Oxfordshire: Routledge.

    Google Scholar 

  • Gilbert, S. F. (2006). Developmental biology. Sunderland: Sinauer.

    Google Scholar 

  • Gilbert, S. F., & Epel, D. (2009). Ecological developmental biology. Sunderland: Sinauer.

    Google Scholar 

  • Gintis, H. (2011). Gene-culture coevolution and the nature of human sociality. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 878–888.

    Article  Google Scholar 

  • Glimcher, P. W. (2005). Indeterminacy in brain and behaviour. Annual Review of Psychology, 56, 25–56.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2016). Other minds: The octopus, the sea, and the deep origins of consciousness. Straus and Giroux: Farrar.

    Google Scholar 

  • Goelzer, A., Brikci, F. B., Martin-Verstraete, I., Noirot, P., Bessières, P., Aymerich, S., et al. (2008). Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis. BMC Systems Biology, 2(1), 2097–2110.

    Article  Google Scholar 

  • Grant, B. J., Gorfe, A. A., & McCammon, J. A. (2010). Large conformational changes in proteins: Signaling and other functions. Current Opinion in Structural Biology, 20, 142–147.

    Article  Google Scholar 

  • Grundmann, M. (2010). Physics of semiconductors. Berlin: Springer.

    Book  Google Scholar 

  • Guay, A., & Sartenaer, O. (2018). Emergent quasiparticles. Or how to get a rich physics from a sober metaphysics. In O. Bueno, R.-L. Chen, & M. B. Fagan (Eds.), Individuation, process and scientific practices (pp. 214–234). Oxford: OUP.

    Google Scholar 

  • Harari, Y. N. (2014). Sapiens: A brief history of humankind. New York: Random House.

    Google Scholar 

  • Hartwell, L. H., et al. (1999). From molecular to modular cell biology. Nature, 402, C47–C52.

    Article  Google Scholar 

  • Hasan, M. Z., & Kane, C. L. (2010). Colloquium: Topological insulators. Reviews of Modern Physics, 82(4), 3045.

    Article  Google Scholar 

  • Hendry, R. F. (2010). Emergence vs. reduction in chemistry. In C. MacDonald & G. MacDonald (Eds.), Emergence in mind (pp. 205–221). Oxford: Oxford University Press.

    Google Scholar 

  • Hodges, A. (1992). Alan Turing: The Enigma. Vintage Books.

    Google Scholar 

  • Hoffmann, P. (2012). Life’s Ratchet: How molecular machines extract order from Chaos. New York: Basic Books.

    Google Scholar 

  • Hofmeyr, J. H. S. (2017). Basic biological anticipation. In R. Poli (Ed.), Handbook of anticipation. Heidelberg: Springer.

    Google Scholar 

  • Hofmeyr, J. H. S. (2018). Causation, constructors and codes. Biosystems, 164, 121–127.

    Article  Google Scholar 

  • Hordijk, W. (2013). Autocatalytic sets: from the origin of life to the economy. BioScience, 63, 877–881.

    Article  Google Scholar 

  • Humphreys, P. (1997). Emergence, not supervenience. Philosophy of Science, 64, S337–S345.

    Article  Google Scholar 

  • Humphreys, P. (2016). Emergence: A philosophical account. Oxford: Oxford University Press.

    Google Scholar 

  • Jeffery, K., Pollack, R., & Rovelli, C. (2019). On the statistical mechanics of life: Schrödinger revisited. preprint. arXiv: 1908.08374.

  • Juarrero, A. (1999). Dynamics in action: Intentional behavior as a complex system. Cambridge: MIT Press.

    Book  Google Scholar 

  • Kandel, E. R. (1998). A new intellectual framework for psychiatry. American Journal of Psychiatry, 155, 457–469.

    Article  Google Scholar 

  • Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294(5544), 1030–1038.

    Article  Google Scholar 

  • Kandel, E. R. (2012). The age of insight: The quest to understand the unconscious in art, mind, and brain, from Vienna 1900 to the present. New York: Random House.

    Google Scholar 

  • Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2013). Principles of neural science. New York: McGraw Hill Professional.

    Google Scholar 

  • Kanter, I., Kopelowitz, E., Vardi, R., Zigzag, M., Kinzel, W., Abeles, M., et al. D. (2011). Nonlocal mechanism for cluster synchronization in neural circuits. EPL (Europhysics Letters), 93(6), 66001.

    Article  Google Scholar 

  • Karplus, M. (2014). Development of multiscale models for complex chemical systems: From H+ H2 to biomolecules. Angewandte Chemie International Edition, 53, 9992–10005.

    Article  Google Scholar 

  • Keimer, B., & Moore, J. E. (2017). The physics of quantum materials. Nature Physics, 13, 1045.

    Google Scholar 

  • Kim, J. (1998). Mind in a physical world. Cambridge: MIT Press.

    Book  Google Scholar 

  • Kim, J. (1999). Supervenient properties and micro-based properties: A reply to Noordhof. Proceedings of the Aristotelian Society, 99, 115–118.

    Article  Google Scholar 

  • King, R. A., Siddiqi, A., Allen, W. D., & Schaefer III, H. F. (2010). Chemistry as a function of the fine-structure constant and the electron-proton mass ratio. Physical Review A, 81(4), 042523.

    Google Scholar 

  • Knuth, D. E. (1973). The art of computer programming: Vol. 1. Fundamental algorithms. Reading: Addison-Wesley

    Google Scholar 

  • Lancaster, T., & Pexton, M. (2015). Reduction and emergence in the fractional quantum Hall state. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 52, 343–357.

    Article  Google Scholar 

  • Laughlin, R. B. (1999). Fractional quantization. Reviews of Modern Physics, 71, 863.

    Google Scholar 

  • Leggett, A. J. (1992). On the nature of research in condensed-state physics. Foundations of Physics, 22, 221–233.

    Article  Google Scholar 

  • Lehn, J.-M. (1993). Supramolecular chemistry. Science, 260, 1762–1764.

    Article  Google Scholar 

  • Lehn, J.-M. (1995). Supramolecular chemistry. Weinheim: VCH Verlagsgesellschaft mbH.

    Google Scholar 

  • Lindholm, T., Yellin, F., Bracha, G., & Buckley, A. (2014). The Java virtual machine specification. Pearson Education.

    Google Scholar 

  • Lucas, J. R. (1996). The unity of science without reductionism. Acta Analytica, 15, 89–95.

    Google Scholar 

  • Luisi, P. L. (2002). Emergence in chemistry: Chemistry as the embodiment of emergence. Foundations of Chemistry, 4, 183–200.

    Article  Google Scholar 

  • MacCormick, J. (2011). Nine algorithms that changed the future: The ingenious ideas that drive today’s computers. Cambridge: Princeton University Press.

    Google Scholar 

  • Magleby, K. L. (2017). Ion-channel mechanisms revealed. Nature, 541, 33–34.

    Google Scholar 

  • Mayr, E. (2002). What evolution is. Hurst: Phoenix.

    Google Scholar 

  • McCleish, T. (2017). Strong emergence and downward causation in biological physics. Philosophica, 92, 113–138.

    Google Scholar 

  • McLeish, T. (2019). Soft matter—An emerging interdisciplinary science of emergent entities. In S. Gibb, R. F. Hendry, & T. Lancaster (Eds.), The Routledge handbook of emergence (pp. 248–264). Milton Park: Routledge.

    Google Scholar 

  • McLeish, T., Pexton, M., & Lancaster, T. (2019). Emergence and topological order in classical and quantum systems. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 66, 155–169.

    Article  Google Scholar 

  • Mellisinos, A. C. (1990). Principles of modern technology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Menzies, P. (2001). Counterfactual theories of causation. In The Stanford Encyclopedia of Philosophy.

    Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824–827.

    Article  Google Scholar 

  • Montévil, M., & Mossio, M. (2015). Biological organisation as closure of constraints. Journal of Theoretical Biology, 372, 179–191.

    Article  Google Scholar 

  • Montévil, M., Mossio, M., Pocheville, A., & Longo, G. (2016). Theoretical principles for biology: Variation. Progress in Biophysics and Molecular Biology, 122(1), 36–50.

    Article  Google Scholar 

  • Mossio, M., Montévil, M., & Longo, G. (2016). Theoretical principles for biology: Organization. Progress in Biophysics and Molecular Biology, 122(1), 24–35.

    Article  Google Scholar 

  • Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. The British Journal for the Philosophy of Science, 60(4), 813–841.

    Article  Google Scholar 

  • Mossio, M., & Moreno, A. (2020). Organisational closure in biological organisms. History and Philosophy of the Life Sciences, 32(2/3), 269–88.

    Google Scholar 

  • Müller, G. B. (2007). Evo-devo: Extending the evolutionary synthesis. Nature Reviews Genetics, 8(12), 943–949.

    Article  Google Scholar 

  • Natarajan, C., Hoffmann, F. G., Weber, R. E., Fago, A., Witt, C. C., & Storz, J. F. (2016). Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science, 354(6310), 336–339.

    Article  Google Scholar 

  • Nichols, A. L. A., et al. (2017). A global brain state underlies C. elegans sleep behavior. Science, 356.6344, 1247.

    Google Scholar 

  • Noble, D. (2002). Modeling the heart-from genes to cells to the whole organ. Science, 295, 1678–1682.

    Article  Google Scholar 

  • Noble, D. (2008). The music of life: Biology beyond genes. Oxford: Oxford University Press.

    Google Scholar 

  • Noble, D. (2011). A theory of biological relativity: No privileged level of causation. Interface Focus, 2, 55–64.

    Article  Google Scholar 

  • Noble, D. (2017). Evolution viewed from physics, physiology and medicine. Interface Focus, 7(5), 20160159.

    Article  Google Scholar 

  • Noble, R., & Noble, D. (2018). Harnessing stochasticity: How do organisms make choices? Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(10), 106309.

    Google Scholar 

  • Noble, R., Tasaki, K., Noble, P. J., & Noble, D. (2019). Biological relativity requires circular causality but not symmetry of causation: So, where, what and when are the boundaries? Frontiers in Physiology, 10, 827.

    Google Scholar 

  • Nurse, P. (2008). Life, logic and information. Nature, 454, 424.

    Google Scholar 

  • O’Connor, T., & Wong, H. Y. (2015). Emergent properties. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy.

    Google Scholar 

  • O’Gorman, T. J., Ross, J. M., Taber, A. H., Ziegler, J. F., Muhlfeld, H. P., Montrose, C. J., et al. (1996). Field testing for cosmic ray soft errors in semiconductor memories. IBM Journal of Research and Development, 40, 41–50.

    Article  Google Scholar 

  • Oyama, S., Griffiths, P. E., & Gray, R. D. (2001). Cycles of contingency: Developmental systems and evolution. Cambridge: MIT Press.

    Google Scholar 

  • Passon, O. (2019). Completeness and quantum theory: From the spectral gap to EPR and back again. Lecture notes, Bergisches Universität Wuppertal.

    Google Scholar 

  • Penrose, R. (2000). The large, the small and the human mind. Cambridge: Cambridge University Press.

    Google Scholar 

  • Percival, I. (1991). Schrödinger’s quantum cat. Nature, 351, 357.

    Google Scholar 

  • Peter, I. S., & Davidson, E. H. (2011). Evolution of gene regulatory networks controlling body plan development. Cell, 144(6), 970–985.

    Article  Google Scholar 

  • Peter, P., & Uzan, J. P. (2013). Primordial cosmology. Oxford: Oxford University Press.

    Google Scholar 

  • Petsko, G. A., & Ringe, D. (2009). Protein structure and function. Oxford: Oxford University Press.

    Google Scholar 

  • Phillips, P. (2012). Advanced solid state physics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pigliucci, M., & Müller, G. B. (2000). Evolution—The extended synthesis. Cambridge: MIT Press.

    Google Scholar 

  • Qi, X.-L., & Zhan, S.-C. (2011). Topological insulators and superconductors. Reviews of Modern Physics, 83, 1057.

    Google Scholar 

  • Randall, D., Burggren, W., & French, K. (2002). Eckert animal physiology: Mechanisms and adaptations. New York: W. H. Freeman.

    Google Scholar 

  • Ranjan, R., Logette, E., Marani, M., Herzog, M., Tache, V., & Markram, H. (2019). A kinetic map of the homomeric voltage-gated potassium channel (Kv) family. Frontiers in Cellular Neuroscience, 13, 358.

    Google Scholar 

  • Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297, 1551–1555.

    Article  Google Scholar 

  • Rhoades, R., & Pflanzer, R. (1989). Human physiology. Fort Worth: Saunders College Publishing.

    Google Scholar 

  • Rolls, E. T., & Deco, G. (2010). The noisy brain: Stochastic dynamics as a principle of brain function. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Rosen, R. (1958). A relational theory of biological systems. The Bulletin of Mathematical Biophysics, 20, 245–260.

    Article  Google Scholar 

  • Sales-Pardo, M. (2017). The importance of being modular. Science, 357, 128–129.

    Article  Google Scholar 

  • Santo, D. (2019). Flavio, and Nicolas Gisin. “Physics without determinism: Alternative interpretations of classical physics.”. Phys. Rev. A, 100, 062107. preprint. arXiv: 1909.03697.

  • Sartenaer, O. (2015). Synchronic vs. diachronic emergence: A reappraisal. European Journal for Philosophy of Science, 5, 31–54.

    Article  Google Scholar 

  • Sauro, H. M. (2017). Control and regulation of pathways via negative feedback. Journal of the Royal Society Interface, 14(127), 20160848.

    Article  Google Scholar 

  • Scalo, J., Wheeler, J. C., & Williams, P. (2001). Intermittent jolts of galactic UV radiation: Mutagenic effects. In L. M. Celnekier (Ed.), Frontiers of life, 12th Recontres de Blois. preprint. astro-ph/0104209

  • Scott, A. (1999). Stairway to the mind: The controversial new science of consciousness. Berlin: Springer Science and Business Media.

    Google Scholar 

  • Simon, H. A. (1996). The architecture of complexity. Sciences of the artificial (3rd edn.). Cambridge: MIT Press.

    Google Scholar 

  • Simon, S. H. (2013). The Oxford solid state basics. Oxford: Oxford University Press.

    Google Scholar 

  • Tanenbaum, A. S. (2006). Structured computer organisation. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Thompson, C. (2019). Coders: Who they are, what they think, and how they are changing the world. London: Picador.

    Google Scholar 

  • Tokura, Y., Kawasaki, M., & Nagaosa, N. (2017). Emergent functions of quantum materials. Nature Physics, 13, 1056.

    Google Scholar 

  • Ulanowicz, R. E. (1995). Utricularia’s secret: The advantage of positive feedback in oligotrophic environments. Ecological Modelling, 79, 49–57.

    Article  Google Scholar 

  • Unwin, N. (1993). Neurotransmitter action: Opening of ligand-gated ion channels. Cell, 72, 31–41.

    Article  Google Scholar 

  • Venema, L., Verberck, B., Georgescu, I., Prando, G., Couderc, E., Milana, S., et al. (2016). The quasiparticle zoo. Nature Physics, 12(12), 1085–1089.

    Article  Google Scholar 

  • Wagner, A. (2011). The origins of evolutionary innovations. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Wagner, A. (2017). Arrival of the fittest. New York: Penguin Random House.

    Google Scholar 

  • Walker, S. I., Kim, H., & Davies, P. C. (2016). The informational architecture of the cell. Philosophical Transactions of the Royal Society, 374, 20150057.

    Google Scholar 

  • Wang, H. (1997). A logical journey from Gödel to philosophy. Cambridge: MIT Press.

    Google Scholar 

  • Watson, J. D., Bell, S. P., Gann, A., Levine, M., Losick, R., & Baker, T. A. (2013). Molecular biology of the gene. Pearson.

    Google Scholar 

  • Weinberg, S. (1995). The quantum theory of fields foundations (Vol. 1). Cambridge: Cambridge University Press.

    Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.

    Book  Google Scholar 

  • Winning, J., & Bechtel, W. (2018). Rethinking causality in biological and neural mechanisms: Constraints and control. Minds and Machines, 28, 287–310.

    Article  Google Scholar 

  • Wolpert, L. (2002). Principles of development. Oxford: Oxford University Press.

    Google Scholar 

  • Wu, Z. S., Cheng, H., Jiang, Y., Melcher, K., & Xu, H. E. (2015). Ion channels gated by acetylcholine and serotonin: Structures, biology, and drug discovery. Acta Pharmacologica Sinica, 36, 895.

    Google Scholar 

  • Ziegler, J. F., & Lanford, W. A. (1979). Effect of cosmic rays on computer memories. Science, 206, 776–788.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. R. Ellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ellis, G.F.R. (2021). Why Reductionism does not Work. In: Passon, O., Benzmüller, C. (eds) Wider den Reduktionismus. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63187-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63187-4_6

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63186-7

  • Online ISBN: 978-3-662-63187-4

  • eBook Packages: Social Science and Law (German Language)

Publish with us

Policies and ethics