Skip to main content

Disorders of Glycolysis and the Pentose Phosphate Pathway

  • Chapter
  • First Online:
Inborn Metabolic Diseases

Abstract

Glycolysis which converts each molecule of glucose to two of pyruvate is the most important source of energy in erythrocytes and in some types of skeletal muscle fibres, therefore inherited diseases of glycolysis are mainly characterized by haemolytic anaemia and/or metabolic myopathy. Ten inborn errors of the glycolytic pathway are known. The pentose phosphate pathway consists of two distinct parts: the first part, an oxidative, non-reversible pathway, produces NADPH, and the second part, a non-oxidative, reversible pathway, produces ribose for nucleotide and nucleic acid synthesis and connects intermediates to glycolysis. Four inborn errors in the pentose phosphate pathway (PPP) are known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hiatt HH (2001) Pentosuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1589–1599

    Google Scholar 

  2. Di Mauro S, Lamperti C (2001) Muscle Glycogenoses. Muscle Nerve 24:984–999

    Article  Google Scholar 

  3. Vives-Corrons JL, Koralkova P, Grau JM et al (2013) First description of phosphofructokinase deficiency in Spain: identification of a novel homozygous missense mutation in the PFKM gene. Front Physiol 30(4):393

    Google Scholar 

  4. Simila ME, Auranen M, Piirila PL (2020) Beneficial effects of ketogenic diet on phosphofructokinase deficiency (Glycogen Storage Disease Type VII). Front Neurol 11:57

    Article  Google Scholar 

  5. Mamoune A, Bahuau M, Hamel Y et al (2014) A thermolabile aldolase a mutant causes fever-induced recurrent rhabdomyolysis without haemolytic anemia. PLoS 13:10

    Google Scholar 

  6. Wilmshurst JM, Wise GA, Pollard JD, Ouvrier RA (2004) Chronic axonal neuropathy with triosephosphate isomerase deficiency. Pediatr Neurol 30:146–148

    Article  Google Scholar 

  7. Sarper N, Zengin E, Jakobs C et al (2013) Mild hemolytic anemia, progressive neuromotor retardation and fatal outcome: a disorder of glycolysis, triose- phosphate isomerase deficiency. Turk J Pediatr 55(2):198–202

    PubMed  Google Scholar 

  8. Orosz F, Oláh J, Ovádi J (2009) Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta 1792:1168–1174

    Article  CAS  Google Scholar 

  9. Roland BP, Zeccola AM, Larsen SB et al (2016) Structural and genetic studies demonstrate neurologic dysfunction in Triosephosphate isomerase deficiency is associated with impaired synaptic vesicle dynamics. PLoS Genet 12(3):e1005941

    Article  Google Scholar 

  10. Segal J, Mülleder M, Krüger A, et al (2019) Low catalytic activity is insufficient to induce disease pathology in triosephosphate isomerase deficiency. J Inherit Metab Dis 42(5):839–849

    Google Scholar 

  11. Morales-Briceño H, Ha AD, London K, Farlow D, Chang CF, Fung SC (2019) Parkinsonism in PGK1 deficiency implicates the glycolytic pathway in nigrostriatal dysfunction. Parkinsonism Relat Disord 64:319–323

    Article  Google Scholar 

  12. Beutler E (2007) PGK deficiency. Review. Br J Haematol 136:3–11

    Article  CAS  Google Scholar 

  13. Sakaue S, Kasai T, Mizuta I et al (2017) Early-onset parkinsonism in a pedigree with phosphoglycerate kinase deficiency and a heterozygous carrier: do PGK-1 mutations contribute to vulnerability to parkinsonism? NPJ Parkinsons Dis 3:13

    Article  Google Scholar 

  14. Chiarelli LR, Morera SM, Bianchi P et al (2012) Molecular insights on pathogenic effects of mutations causing phosphoglycerate kinase deficiency. PLoS One 7(2):e32065

    Article  CAS  Google Scholar 

  15. Salameh J, Goyal N, Choudry R et al (2013) Phosphoglycerate mutase deficiency with tubular aggregates in a patient from Panama. Muscle Nerve 47:138–140

    Article  CAS  Google Scholar 

  16. Musumeci O, Brady S, Rodolico C et al (2014) Recurrent rhabdomyolysis due to muscle b-enolase deficiency: very rare or underestimated? J Neurol 261:2424–2428

    Article  Google Scholar 

  17. Wigley R, Scalco RS, Gardiner AR et al (2019) The need for biochemical testing in beta-enolase deficiency in the genomic era. JIMD Rep 50(1):40–43

    Google Scholar 

  18. Ito T, Aoshima M, Suguira K et al (2015) Pustular psoriasis-like lesions associated with hereditary lactate dehydrogenase M subunit deficiency without interleukin-36 receptor antagonist mutation: long-term follow-up of two cases. Br J Dermatol 172(6):1674–1676

    Google Scholar 

  19. Maekawa M, Sudo K, Li SS, Kanno T (1991) Genotypic analysis of families with lactate dehydrogenase a(M) deficiency by selective DNA amplification. Intern Med Hum Genet 88:34–38

    Article  CAS  Google Scholar 

  20. Sjarif DR, Ploos van Amstel JK, Duran M et al (2003) Isolated and contiguous glycerol kinase gene disorders: a review. J Inherit Metab Dis 23:529–547

    Article  Google Scholar 

  21. Wikiera B, Jakubiak A, Zimowski J et al (2012) Complex glycerol kinase deficiency – X-linked contiguous gene syndrome involving congenital adrenal hypoplasia, glycerol kinase deficiency, muscular Duchenne dystrophy and intellectual disability (IL1RAPL gene deletion). Pediatr Endocrinol Diabetes Metab 18:153–157

    CAS  PubMed  Google Scholar 

  22. Hellerud C, Wramner N, Erikson A et al (2004) Glycerol kinase deficiency: follow-up during 20 years, genetics, biochemistry and prognosis. Acta Paediatr 93:911–921

    Article  CAS  Google Scholar 

  23. Sjarif DR, Sinke RJ, Duran M et al (1998) Clinical heterogeneity and novel mutations in the glycerol kinase gene in three families with isolated glycerol kinase deficiency. J Med Genet 35:650–656

    Article  CAS  Google Scholar 

  24. Hellerud C, Adamowicz M, Jurkiewicz D et al (2003) Clinical heterogeneity and molecular findings in five polish patients with glycerol kinase deficiency; investigation of two splice site mutations with computerized splice junction analysis and Xp21 gene specific mRNA analysis. Mol Genet Metab 79:149–159

    Article  CAS  Google Scholar 

  25. Wamelink MMC, Struys EA, Jakobs C (2008) The biochemistry, metabolism and inherited defect of the pentose phosphate pathway: a review. J Inherit Metab Dis 31:703–717

    Article  CAS  Google Scholar 

  26. Naik N, Shah A, Wamelink MMC et al (2017) Rare case of ribose 5 phosphate isomerase deficiency with slowly progressive leukoencephalopathy. Neurology 89:1195–1196

    Article  Google Scholar 

  27. Kaur P, Wamelink MMC, van der Knaap MS et al (2018) Confirmation of a rare genetic leukoencephalopathy due to a novel bi-allelic variant in RPIA Eur. J Med Genet 62(8)

    Google Scholar 

  28. Brooks SS, Anderson S, Bhise V, Botti C (2018) Further delineation of Ribose-5-phosphate isomerase deficiency: report of a third case. J Child Neurol 33:784–787

    Article  Google Scholar 

  29. van der Knaap MS, Wevers RA, Struys EA et al (1999) Leukoencephalopathy associated with a disturbance in the metabolism of polyols. Ann Neurol 46(6):925–928

    Article  Google Scholar 

  30. Williams M, Valayannopoulos V, Altassan R et al (2019) Clinical, biochemical, and molecular overview of Transaldolase deficiency and evaluation of the endocrine function: update of 34 patients. J Inherit Metab Dis 42:147–158

    Article  CAS  Google Scholar 

  31. Oaks Z, Jimah J, Grossman CC et al (2019) Transaldolase Haploinsufficiency in subjects with acetaminophen-induced liver failure. J Inherit Metab Dis. https://doi.org/10.1002/jimd.12197. Online ahead of print

  32. Leduc CA, Crouch EE, Wilson A et al (2014) Novel association of early onset hepatocellular carcinoma with transaldolase deficiency. JIMD Rep 12:121–127

    Article  Google Scholar 

  33. Al-Shamsi AM, Ben-Salem S, Hertecant J, Al-Jasmi F (2015) Transaldolase deficiency caused by the homozygous p.R192C mutation of the TALDO1 gene in four Emirati patients with considerable phenotypic variability. Eur J Pediatr 174:661–668

    Article  CAS  Google Scholar 

  34. Hanczko R, Fernandez DR, Doherty E et al (2009) Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine. J Clin Invest 119:1546–1557

    Article  CAS  Google Scholar 

  35. Lee-Barber J, English TE, Britton JF et al (2019) Apparent acetaminophen toxicity in a patient with Transaldolase deficiency. JIMD Rep 44:9–15

    Article  Google Scholar 

  36. Wamelink MMC, Salomons GS, Roos B et al (2015) Transketolase (TKT) deficiency, a novel disease in the non-oxidative part of the pentose phosphate pathway, causing short stature, developmental delay, and congenital heart defects. J Inherit Metab Dis 38:S47–S48

    Google Scholar 

  37. Boyle L, Wamelink MMC, Salomons GS et al (2016) Mutations in TKT are the cause of a new syndrome including short stature, developmental delay, and congenital heart defects. Am J Hum Gen 98:1235–1242

    Article  CAS  Google Scholar 

  38. Wamelink MM, Ramos RJ, van den Elzen AP et al (2015) First two unrelated cases of isolated sedoheptulokinase deficiency: a benign disorder? J Inherit Metab 38:889–894

    Article  Google Scholar 

  39. Kardon T, Stroobant V, Veiga-da-Cunha M, Schaftingen EV (2008) Characterization of mammalian sedoheptulokinase and mechanism of formation of erythritol in sedoheptulokinase deficiency. FEBS Lett 582:3330–3334

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjam M. C. Wamelink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wamelink, M.M.C., Valayannopoulos, V., Garavaglia, B. (2022). Disorders of Glycolysis and the Pentose Phosphate Pathway. In: Saudubray, JM., Baumgartner, M.R., García-Cazorla, Á., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63123-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63123-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63122-5

  • Online ISBN: 978-3-662-63123-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics