Skip to main content

Simulation Supported Manufacturing of Profiled Composite Parts Using the Braiding Technique

  • Conference paper
  • First Online:
Advances in Automotive Production Technology – Theory and Application

Part of the book series: ARENA2036 ((ARENA2036))

  • 3498 Accesses

Abstract

Composite materials have brought new development and sizing possibilities for structural components in transportation systems. Their high specific material properties are enabling weight reduction while increasing structural performance. On the downside, composite materials are generally related to high material and manufacturing costs and increased characterization efforts. Through the braiding technique, profiled structures can be manufactured in a highly automated and reproducible process. Moreover, braided composites can absorb more energy compared to their unidirectional or woven counterparts ( Falzon P. J., Herszberg I., Bannister M. K., Leong K. H.: Compression and Compression-after-impact Properties of 2-D Braided Carbon/Epoxy Composites. Proceedings of the First Australasian Congress on Applied Mechanics: ACAM-96, pp. 297 (1996).).

In this paper, we describe the development and validation of a simulation framework as sustainable alternative to material- and cost-intensive experimental testing. Our work aims at considering the influence of manufacturing effects and textile architecture on the material properties and therefore at increasing the reliability of structure sizing. As validation basis, flat specimens of biaxial and triaxial braided composites are first manufactured and tested under quasi-static loading. We then develop a digital twin of the braiding process and its material characterisation. Within this framework, the braid’s textile architecture is predicted with multiple finite-element simulations at the mesoscopic scale.

The numerical predictions show the strong influence of braiding angle and braiding core diameter on the textile architecture and consequently on the material properties. More particularly, crucial effects with negative impact on the mechanical properties (presence of gaps or yarn locking) are highlighted. On a pure numerical basis, we finally calculate the process window for braided structures, which links the process parameters to the resulting material properties. The present approach is a crucial step toward the reduction of experimental investigations in early development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Falzon, P. J., Herszberg, I., Bannister, M. K., Leong, K. H.: Compression and Compression-after-impact Properties of 2-D Braided Carbon/Epoxy Composites. Proceedings of the First Australasian Congress on Applied Mechanics: ACAM-96, p. 297 (1996)

    Google Scholar 

  2. Dittmann, J., Middendorf, P., et al.: Der digitale Prototyp - Ganzheitlicher digitaler Prototyp im Leichtbau für die Großserienproduktion. ARENA2036 Reihe-DigitPro, Springer-Vieweg (2019)

    Google Scholar 

  3. Raichle, A., Ritter, F., Vinot, M., Dittmann, J. et al.: Weiterentwicklung des Digitalen Prototyps zum Digitalen Fingerabdruck, ATZ-Magazin 03/2019, Springer-Vieweg (2019)

    Google Scholar 

  4. Blonk, H., Kool, A., Luske, B., Ponsioen, T., Scholten, J.: Methodology for assessing carbon footprints of horticultural products. Blonk Milieu Advies, S. 36–40 (2010)

    Google Scholar 

  5. Böhler, P.: Einzelfadenbasierte Modellierung von textilen Preform-Prozessen. Dissertation Universität Stuttgart (2019)

    Google Scholar 

  6. Czichos, R., Bareiro, O., Pickett, A. K., Middendorf, P., Gries, T.: Experimental and numerical studies of process variabilities in biaxial carbon fiber braids. International Journal of Material Forming (2020)

    Google Scholar 

  7. DYNAmore GmbH; Envyo® User’s Manual-DRAFT, Germany (2020)

    Google Scholar 

  8. Whitcomb, J.D., Chapman, C.D., Tang, X.: Derivation of Boundary Conditions for Micromechanics Analyses of Plain and Satin Weave Composites. J. Compos. Mater. 34, 724–747 (2000)

    Article  Google Scholar 

  9. Wehrkamp-Richter, T., Pinho, S.T., Hinterhölzl, R.: Failure behaviour of triaxial braided composites, 17th European Conference on Composite Materials (2016)

    Google Scholar 

  10. Kier, Z.T., Salvi, A., Theis, G., Waas, AM., Shahwan, K.: Estimating mechanical properties of 2D triaxially braided textile composites based on microstructure properties, Composites: Part B 68, 288–299 (2014)

    Google Scholar 

  11. Lin, H., Brown, L.P., Long, A.C.: Modelling and Simulating Textile Structures using TexGen. Adv. Tex. Eng. 331, 44–47 (2011)

    Google Scholar 

  12. Pinho, S., Iannucci, L., Robinson, P.: Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation, Composites Part A: Applied Science and Manufacturing 37, 766–777 (2005)

    Article  Google Scholar 

  13. Kolling S., Haufe A., Feucht M., Du Bois P.A.: SAMP-1: A Semi-Analytical Model for the Simulation of Polymers, 4. LS-DYNA Anwenderforum (2005)

    Google Scholar 

  14. Pinho, S., Robinson, P., Iannucci, L.: Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos. Sci. Technol. 66, 2069–2079 (2006)

    Article  Google Scholar 

  15. Birkefeld, K.: Virtuelle Optimierung von Geflecht-Preforms unter Berücksichtigung von Fertigungsaspekten. Universität Stuttgart, Institut für Flugzeugsbau (2013)

    Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the funding provided by the Federal Ministry of Education and Research Germany within the Research campus ARENA2036—DigitPro and Digitaler Fingerabdruck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Dittmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dittmann, J., Vinot, M., Middendorf, P., Toso, N., Voggenreiter, H. (2021). Simulation Supported Manufacturing of Profiled Composite Parts Using the Braiding Technique. In: Weißgraeber, P., Heieck, F., Ackermann, C. (eds) Advances in Automotive Production Technology – Theory and Application. ARENA2036. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62962-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62962-8_41

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62961-1

  • Online ISBN: 978-3-662-62962-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics