Skip to main content

Schalenförmige Hybridverbunde und Inserts

  • Chapter
  • First Online:
Intrinsische Hybridverbunde für Leichtbautragstrukturen

Zusammenfassung

Schalenförmige Bauteile zeichnen sich durch ein sehr großes Verhältnis von Breite oder Länge zur Wanddicke aus. Durch die geringe Wandstärke kommt der Einleitung von Lasten in derartige Strukturen eine besondere Bedeutung zu. Hierfür werden häufig spezielle Lasteinleitungselemente (Inserts) in die Struktur eingebracht, die als Anbindungspunkte dienen. Die Kombination von metallischem Lasteinleitungselement und CFK-Struktur wird anhand drei verschiedener Teilprojekte untersucht. Im Projekt „Multilayer-Inserts – Intrinsische Hybridverbunde zur Krafteinleitung in dünnwandige Hochleistungs-CFK-Strukturen“ wurde ein Lasteinleitungselement für automatisiert gefertigte Faserverbundstrukturen entwickelt. Das Projekt „Grundlagenuntersuchungen intrinsisch gefertigter FVK/Metall-Verbunde – vom eingebetteten Insert zur lasttragenden Hybridstruktur“ untersucht die faserschonende, intrinsische Herstellung von FVK/Metall-Verbunden im RTM-Prozess anhand verschiedener Hybridisierungsansätze. Im Projekt „Einfluss, Detektion und Vorhersage von Defekten in großserientauglichen Hybridverbunden für Metall/CFK-Leichtbautragstrukturen“ wurde ein neuartiges Anbindungskonzept für Metall-CFK-Hybridstrukturen mit thermoplastischer Zwischenkomponente entwickelt. Im Rahmen dieses Kapitels werden die Ergebnisse der Teilprojekte detailliert vorgestellt und erörtert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Havar T (2007) Beitrag zur Gestaltung und Auslegung von 3D-verstärkten Faserverbundschlaufen. Dissertation, Universität Stuttgart

    Google Scholar 

  2. Schürmann H (2007) Konstruieren mit Faser-Kunststoff-Verbunden, 2., bearb. u. erw. Aufl. VDI-Buch. Springer, Berlin/Heidelberg

    Google Scholar 

  3. Messler RW (2004) Joining composite materials and structures: some thought-provoking possibilities. J Thermoplast Compos Mater 17:51–75. https://doi.org/10.1177/0892705704033336

    Article  Google Scholar 

  4. Ucsnik S, Scheerer M, Zaremba S et al (2010) Experimental investigation of a novel hybrid metal–composite joining technology. Compos A: Appl Sci Manuf 41:369–374

    Article  Google Scholar 

  5. Camanho PP, Fink A, Obst A et al (2009) Hybrid titanium–CFRP laminates for high-performance bolted joints. Compos A: Appl Sci Manuf 40:1826–1837. https://doi.org/10.1016/j.compositesa.2009.02.010

    Article  Google Scholar 

  6. Rossow C-C, Wolf K, Horst P (2014) Handbuch der Luftfahrzeugtechnik. Hanser, München

    Book  Google Scholar 

  7. Habenicht G (2009) Kleben. Grundlagen, Technologien, Anwendungen, 6., akt. Aufl. VDI-Buch. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  8. Peng Z, Nie X (2013) Galvanic corrosion property of contacts between carbon fiber cloth materials and typical metal alloys in an aggressive environment. Surf Coat Technol 215:85–89. https://doi.org/10.1016/j.surfcoat.2012.08.098

    Article  Google Scholar 

  9. Muth M, Schwennen J, Bernath A et al (2018) Numerical and experimental investigation of manufacturing and performance of metal inserts embedded in CFRP. Prod Eng 12:141–152

    Article  Google Scholar 

  10. Harris B (2003) Fatigue in composites. Science and technology of the fatigue response of fibre-reinforced plastics. CRC Press, Boca Raton/Cambridge

    Google Scholar 

  11. Metzner C (2016) Studie der Einflussparameter an mit unidirektional geflochtener Carbonfaser verstärkten Kunststoffen. Z Kunststofftech 1:239–258. https://doi.org/10.3139/O999.01042016

    Article  Google Scholar 

  12. Magagnato D, Seuffert J, Bernath A et al (2018) Experimental and numerical study of the influence of integrated load transmission elements on filling behavior in resin transfer molding. Compos Struct 198:135–143

    Article  Google Scholar 

  13. Seuffert J, Kärger L, Henning F (2017) Simulation of the influence of embedded inserts on the RTM filling behavior considering local fiber structure. In: Key engineering materials. 21st symposium of composites, Bd 742. DGM, S. 681–688

    Google Scholar 

  14. Kassapoglou C (2013) Design and analysis of composite structures. Wiley, Oxford

    Book  Google Scholar 

  15. Groß L, Herwig A, Berg DC et al (2018) Production-based design of a hybrid load introduction element for thin-walled CFRP Structures. Prod Eng 12:113–120. https://doi.org/10.1007/s11740-018-0821-4

    Article  Google Scholar 

  16. Herwig A, Woidt M, Horst P (2016) Comparison of one-, two- and three-dimensional models of a metallic insert in a composite. KEM 713:175–178. https://doi.org/10.4028/www.scientific.net/KEM.713.175

    Article  Google Scholar 

  17. Herwig A, Schmidt C, Horst P (2018) Numerical investigation of a layered hybrid load introduction element for thin-walled CFRP structures. In: 18th European conference on composite materials (ECCM18), June 24-28, Athens, Greece

    Google Scholar 

  18. Serna J, Zinn C, Scharf I et al (2019) Concepts for interface engineering and characterization in composite hybrid structures. IOP Conf Ser Mater Sci Eng 480:12014. https://doi.org/10.1088/1757-899X/480/1/012014

    Article  Google Scholar 

  19. Denkena B, Schmidt C, Weber P (2016) Automated Ffiber Pplacement Hhead for Mmanufacturing of Iinnovative Aaerospace Sstiffening Sstructures. Procedia Manufacturing 6:96–104. https://doi.org/10.1016/j.promfg.2016.11.013

    Article  Google Scholar 

  20. Schmidt C, Denkena B, Groß L et al (2017) Concept for automated production of CFRP-metal hybrid compounds integrated in an Automated Fiber Placement process. Procedia CIRP 62:56–61

    Google Scholar 

  21. Tschätsch H (2005) Praxis der Umformtechnik. Arbeitsverfahren, Maschinen, Werkzeuge, 8., akt. u. erw. Aufl. Vieweg Praxiswissen. Vieweg+Teubner, Wiesbaden, S. l

    Google Scholar 

  22. Gebhardt J (2016) Strukturoptimierung von in FVK eingebetteten metallischen Lasteinleitungselementen. Dissertation, Karlsruher Institut für Technologie

    Google Scholar 

  23. Roth S, Warnck M, Coutandin S et al (2019) Herstellung punktschweißbarer CFK-Metall-Bauteile im RTM-Prozess. Lightweight Des 12:18–23. https://doi.org/10.1007/s35725-019-0047-1

    Article  Google Scholar 

  24. Gebhardt J, Schwennen J, Lorenz F et al (2018) Structure optimisation of metallic load introduction elements embedded in CFRP. Prod Eng 12:131–140

    Article  Google Scholar 

  25. Fleischer J, Gebhardt J (2013) Experimental investigation of metal inserts embedded in composite parts manufactured by the RTM process. In: 13th Japan International SAMPE symposium and exhibition, Nagoya, Japan

    Google Scholar 

  26. Pottmeyer F (2017) Schädigungsverhalten von in CFK-Laminaten eingebetteten Inserts unter bauteilnahen Beanspruchungen. Dissertation. Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie, Bd 72. KIT Scientific Publishing, Karlsruhe

    Google Scholar 

  27. Bambach MR (2013) Fibre composite strengthening of thin-walled steel vehicle crush tubes for frontal collision energy absorption. Thin-Walled Struct 66:15–22. https://doi.org/10.1016/j.tws.2013.02.006

    Article  Google Scholar 

  28. Kim HC, Shin DK, Lee JJ et al (2014) Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application. Compos Struct 112:1–10. https://doi.org/10.1016/j.compstruct.2014.01.042

    Article  Google Scholar 

  29. Kim P (1998) A comparative study of the mechanical performance and cost of metal, FRP, and hybrid beams. Appl Compos Mater 5:175–187

    Article  Google Scholar 

  30. Lauter C, Frantz M, Kohler JP et al (2012) Crash tests of hybrid structures consisting of sheet metal and local CFRP reinforcements. In: 15th European conference on composite materials, Venice

    Google Scholar 

  31. Mathijsen D (2016) Developing a new front undertray for the Jaguar F-type. Reinf Plast 60:294–297. https://doi.org/10.1016/j.repl.2016.06.002

    Article  Google Scholar 

  32. Lima RM, Ismarrubie ZN, Zainudin ES et al (2011) Axial behavior of steel tube wrapped by composite as energy absorber under compressive load. In: 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), Langkawi, Malaysia. S. 10–15

    Google Scholar 

  33. Schmeer S, Balle F, Didi M et al (2013) Experimental and computational analysis of multi-spot welded hybrid Al/CFRP-structures on component level. Adv Eng Mater 15:868–873. https://doi.org/10.1002/adem.201300044

    Article  Google Scholar 

  34. Gebhardt J, Pottmeyer F, Fleischer J et al (2015) Characterization of metal inserts embedded in carbon fiber reinforced plastics. 20th symposium on composites, Vienna, Austria 825–826:506–513

    Google Scholar 

  35. Wang Z, Riemer M, Koch SF et al (2016) Intrinsic hybrid composites for lightweight structures: tooling technologies. WGP Congress 2016 (1140):247–254. https://doi.org/10.4028/www.scientific.net/AMR.1140.247

  36. Mamalis AG, Manolakos DE, Ioannidis MB et al (2005) On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: experimental. Compos Struct 69:407–420. https://doi.org/10.1016/j.compstruct.2004.07.021

    Article  Google Scholar 

  37. Bambach MR, Elchalakani M, Zhao XL (2009) Composite steel–CFRP SHS tubes under axial impact. Compos Struct 87:282–292. https://doi.org/10.1016/j.compstruct.2008.02.008

    Article  Google Scholar 

  38. Kim HC, Shin DK, Lee JJ (2013) Characteristics of aluminum/CFRP short square hollow section beam under transverse quasi-static loading. Compos Part B 51:345–358. https://doi.org/10.1016/j.compositesb.2013.03.020

    Article  Google Scholar 

  39. Bambach MR, Jama HH, Elchalakani M (2009) Static and dynamic axial crushing of spot-welded thin-walled composite steel–CFRP square tubes. Int J Impact Eng 36:1083–1094. https://doi.org/10.1016/j.ijimpeng.2009.03.002

    Article  Google Scholar 

  40. Lauter C, Niewel J, Troester T (2014) Quasistatic and crash tests of steel-CFRP hybrid pillar structures for automotive applications. Int J Autom Comput 1(1):52–66

    Google Scholar 

  41. Kim C, Choi W (2001) Thermo-viscoelastic residual stress analysis of metal liner-inserted composite cylinders. AIAA Applied Aerodynamics Conference 19, Anaheim,USA.

    Google Scholar 

  42. Zarrelli M, Partridge IK, D’Amore A (2006) Warpage induced in bi-material specimens: coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure. Compos A: Appl Sci Manuf 37:565–570. https://doi.org/10.1016/j.compositesa.2005.05.012

    Article  Google Scholar 

  43. Kim HS, Lee DG (2007) Reduction of fabricational thermal residual stress of the hybrid co-cured structure using a dielectrometry. Compos Sci Technol 67:29–44. https://doi.org/10.1016/j.compscitech.2006.05.002

    Article  Google Scholar 

  44. Kim HS, Park SW, Hwang HY et al (2006) Effect of the smart cure cycle on the performance of the co-cured aluminum/composite hybrid shaft. Compos Struct 75:276–288. https://doi.org/10.1016/j.compstruct.2006.04.030

    Article  Google Scholar 

  45. Prussak R, Stefaniak D, Hühne C et al (2015) Residual stresses in intrinsic UD-CFRP-steel-laminates – experimental determination, identification of sources, effects and modification approaches. Mater Sci Forum 2015:369–376

    Google Scholar 

  46. Motavalli M, Terrasi GP, Meier U (1997) On the behaviour of hybrid aluminium/CFRP beams at low temperatures. Compos A: Appl Sci Manuf 28:121–129. https://doi.org/10.1016/S1359-835X(96)00100-5

    Article  Google Scholar 

  47. Kärger L, Bernath A, Fritz F et al (2015) Development and validation of a CAE chain for unidirectional fibre reinforced composite components. Compos Struct 132:350–358. https://doi.org/10.1016/j.compstruct.2015.05.047

    Article  Google Scholar 

  48. Roth S, Pracisnore F, Coutandin S et al (2020) A new approach for modelling the fibre path in bolted joints of continuous fibre reinforced composites. Compos Struct 243:112184. https://doi.org/10.1016/j.compstruct.2020.112184

    Article  Google Scholar 

  49. Magagnato D, Henning F (2015) Process-oriented determination of preform permeability and matrix viscosity during mold filling in resin transfer molding. 20th symposium on composites, 825–826:822–829. https://doi.org/10.4028/www.scientific.net/MSF.825-826.822

  50. Bernath A, Kärger L, Henning F (2016) Accurate cure modeling for isothermal processing of fast curing epoxy resins. Polymers 8:390. https://doi.org/10.3390/polym8110390

    Article  Google Scholar 

  51. DiBenedetto AT (1987) Prediction of the glass transition temperature of polymers: a model based on the principle of corresponding states. J Polym Sci B Polym Phys 25:1949–1969. https://doi.org/10.1002/polb.1987.090250914

    Article  Google Scholar 

  52. Castro JM, Macosko CW (1982) Studies of mold filling and curing in the reaction injection molding process. AIChE J 28:250–260. https://doi.org/10.1002/aic.690280213

    Article  Google Scholar 

  53. Magagnato D, Henning F (2016) RTM molding simulation for unidirectional fiber reinforced composite components considering local fiber orientation and fiber volume fraction. Z Kunststofftech (J Plast Technol) 1:135–156. https://doi.org/10.3139/o999.01032016

    Article  Google Scholar 

  54. Soliman E, Al-Haik M, Taha MR (2012) On and off-axis tension behavior of fiber reinforced polymer composites incorporating multi-walled carbon nanotubes. J Compos Mater 46:1661–1675. https://doi.org/10.1177/0021998311422456

    Article  Google Scholar 

  55. Muth M, Pottmeyer F, Weidenmann KA (2020) Failure behaviour of metal inserts embedded in CFRP subsequent to thermal, mechanical and cyclic pre-damage. Compos Struct 236:111877

    Article  Google Scholar 

  56. Ferguson RF, Hinton MJ, Hiley MJ (1998) Determining the through-thickness properties of FRP materials. Compos Sci Technol 58:1411–1420. https://doi.org/10.1016/S0266-3538(98)00026-8

    Article  Google Scholar 

  57. Helmy S, Hoa SV (2014) Tensile fatigue behavior of tapered glass fiber reinforced epoxy composites containing nanoclay. Compos Sci Technol 102:10–19. https://doi.org/10.1016/j.compscitech.2014.05.038

    Article  Google Scholar 

  58. Pottmeyer F, Bittner J, Pinter P et al (2017) In-situ CT damage analysis of metal inserts embedded in carbon fiber-reinforced plastics. Exp Mech 57:1411–1422

    Article  Google Scholar 

  59. Pottmeyer F, Schlegel O, Weidenmann KA et al (2018) Investigation of the damage evolution of metal inserts embedded in carbon fiber reinforced plastic by means of computed tomography and acoustic emission. Untersuchung der Schädigungsentwicklung von in kohlenstofffaserverstärkten Kunststoffen eingebetteten Inserts mittels Computertomographie und Schallemissionsanalyse. Mater Sci Eng Technol 49:1245–1262

    Google Scholar 

  60. Wilkening J, Pottmeyer F, Weidenmann KA (2016) Research on the interfering effect of metal inserts in carbon fiber reinforced plastics manufactured by the RTM process. In: 17th European conference on composite, Munich

    Google Scholar 

  61. Muth M, Kohlund A, Buch S et al (2019) Investigation of the influence of mechanical predamage and deformation rate on the mechanical properties of CFRP/metal hybrid profiles. In: ICCM22 2019 – 22nd international conference on composites materials, 11.–16. August, Melbourne

    Google Scholar 

  62. Vaidya UK, Gautam ARS, Hosur M et al (2006) Experimental-numerical studies of transverse impact response of adhesively bonded lap joints in composite structures. Int J Adhes Adhes 26:184–198

    Article  Google Scholar 

  63. Muth M, Weidenmann KA (2018) Three-point bending test on CFRP-steel profile hybrid structures. In: Hausmann JM, Siebert M, von HA (Hrsg) 3. Internationale Konferenz Hybrid Materials and Structures, 18.–19. April. Bremen, S 74–80

    Google Scholar 

  64. Bernath A, Groh F, Exner W et al (2019) Experimental and numerical study of the spring-in of angled brackets manufactured using different resins and fiber textiles. J Compos Mater 53:4173–4188. https://doi.org/10.1177/0021998319855423

    Article  Google Scholar 

  65. Bernath A (2020) Numerical prediction of curing and process-induced distortion of composite structures. Dissertation, Karlsruher Institut für Technologie

    Google Scholar 

  66. Simon SL, Mckenna GB, Sindt O (2000) Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation. J Appl Polym Sci 76:495–508. https://doi.org/10.1002/(SICI)1097-4628(20000425)76:4<495:AID-APP7>3.0.CO;2-B

    Article  Google Scholar 

  67. Hobbiebrunken T, Fiedler B, Hojo M et al (2005) Microscopic yielding of CF/epoxy composites and the effect on the formation of thermal residual stresses. Compos Sci Technol 65:1626–1635. https://doi.org/10.1016/j.compscitech.2005.02.003

    Article  Google Scholar 

  68. Kolesnikov B, Herrmann A, Pabsch A et al (1999) Bolzenverbindung für Faserverbundstrukturen, Patent (DE19925953C1)

    Google Scholar 

  69. Messler RW (2000) Trends in key joining technologies for the twenty-first century. Assem Autom 20:118–128

    Article  Google Scholar 

  70. Becker P, Büter A (2017) Hybride Leichtbauhinterachse für Elektrofahrzeuge. Lightweight Des 10:44–47. https://doi.org/10.1007/s35725-017-0049-9

    Article  Google Scholar 

  71. Möller F, Thomy C, Vollertsen F et al (2010) Novel method for joining CFRP to aluminium. Phys Procedia Part B 5:37–45

    Article  Google Scholar 

  72. Böhlke T, Henning F, Hrymak A et al (2019) Continuous–discontinuous fiber-reinforced polymers: an integrated engineering approach. Hanser, München

    Book  Google Scholar 

  73. Mersmann C (2013) Industrialisierende Machine-Vision-Integration im Faserverbundleichtbau. Dissertation, RWTH Aachen

    Google Scholar 

  74. Miene A (2010) Bildanalytische Qualitätssicherung in der Preformfertigung. Vortrag beim Carbon Composites e.V., 5. Sitzung der Arbeitsgruppe „Werkstoff- und Bauteilprüfung“ Thementag: „ZFP in der Produktion“, Augsburg

    Google Scholar 

  75. Orth A (2008) Entwicklung eines Bildverarbeitungssystems zur automatisierten Herstellung faserverstärkter Kunststoffstrukturen. Zugl.: Aachen, Techn. Hochsch., Diss., 2008. Berichte aus der Produktionstechnik. Shaker, Aachen

    Google Scholar 

  76. Palfinger W, Eitzinger C, Thumfahrt S (2012) Vision based sensor enabling automated production of composite materials. Symposium on automation of advanced composites and its technology, Munich, Germany

    Google Scholar 

  77. Göttinger M, Weimer C, Miene A (2009) Inline-Preformprozesskontrolle in der CFK-Fertigung. Deutscher Luft- und Raumfahrtkongress, Aachen, Germany

    Google Scholar 

  78. Vaara P, Leinonen J (2012) Technology survey on NDT of carbon-fiber composites. Publications of Kemi-Tornio University of Applied Sciences Serie B. Reports 8/2012

    Google Scholar 

  79. Zaiß M, Jank M-H, Netzelmann U et al (2017) Use of thermography and ultrasound for the quality control of SMC lightweight material reinforced by carbon fiber tapes. Procedia CIRP 62:33–38. https://doi.org/10.1016/j.procir.2016.06.039

    Article  Google Scholar 

  80. Ibarra-Castanedo C, Maldague X (2004) Pulsed phase thermography reviewed. Quant InfraRed Thermography J 1:47–70. https://doi.org/10.3166/qirt.1.47-70

    Article  Google Scholar 

  81. Töpker JH (2003) Ultraschallmesstechnik zur Online-Erfassung und Analyse des Injektions- und Härtungsablaufs beim Resin Transfer Moulding. Ultrasonic measurement technique for online control and analysis of the impregnation and curing process by resin transfer moulding. Zugl.: Aachen, Techn. Hochsch., Diss., 2002, 1. Aufl. IKV-Berichte aus der Kunststoffverarbeitung, Bd 137. Mainz/Aachen

    Google Scholar 

  82. Cuadra J, Vanniamparambil PA, Hazeli K et al (2013) Damage quantification in polymer composites using a hybrid NDT approach. Compos Sci Technol 83:11–21

    Google Scholar 

  83. Waugh RC, Dulieu-Barton JM, Quinn S (2014) Modelling and evaluation of pulsed and pulse phase thermography through application of composite and metallic case studies. NDT&E Int 66:52–66

    Article  Google Scholar 

  84. Genest M, Martinez M, Mrad N et al (2009) Pulsed thermography for non-destructive evaluation and damage growth monitoring of bonded repairs. Compos Struct 88:112–120

    Article  Google Scholar 

  85. Gamstedt K, Talreja R (1999) Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics. J Mater Sci 34:2535–2546. https://doi.org/10.1023/A:1004684228765

    Article  Google Scholar 

  86. Jollivet T, Peyrac C, Lefebvre F (2013) Damage of composite materials. Procedia Eng 66:746–758

    Article  Google Scholar 

  87. Bretz L, Günther F, Schwarz M et al (2020) Design and quality assurance of intrinsic hybrid metal-CFRP lightweight structures. Proceedings of 4th international conference hybrid materials and structures (hybrid 2020), web-conference, Karlsruhe, S. 144–156

    Google Scholar 

  88. Pohl M, Stommel M (2018) Intrinsic CFRP-metal-hybrids with rubber interface for the improvement of the damping behaviour. Prod Eng 12:153–159. https://doi.org/10.1007/s11740-018-0792-5

    Article  Google Scholar 

  89. Günther F, Pohl M, Kretzschmar V et al (2018) Optimising mechanical interlocking interface of CFRP-(thermoplastic/metal)-hybrids. In: Hausmann JM, Siebert M, von Hehl A (Hrsg) 3. Internationale Konferenz Hybrid Materials and Structures, 18.–19. April. Bremen, Deutschland, S 254–260

    Google Scholar 

  90. Günther F, Ewens J, Stommel M (2020) Potential of mesoscale structural elements in the interface of hybrid CFRP-metal-parts on the load transfer. In: Hopmann C, Dahlmann R (Hrsg) Advances in polymer processing 2020. Proceedings of the international symposium on plastics technology. Springer, Wiesbaden

    Google Scholar 

  91. Günther F, Kretzschmar V, Stommel M et al (2019) Interlocking interface design in metal-CFRP joints using a Monte-Carlo simulation approach. Proceeding of 22nd international conference on composites materials (ICCM22), Melbourne

    Google Scholar 

  92. Kratz A, Auer M, Stommel M et al (2013) Visualization and analysis of second-order tensors: moving beyond the symmetric positive-definite case. Comput Graphics Forum 32:49–74

    Article  Google Scholar 

  93. Delmarcelle T, Hesselink L (1993) Visualizing second-order tensor fields with hyperstreamlines. IEEE Comput Graph Appl 13:25–33

    Article  Google Scholar 

  94. Kretzschmar V, Günther F, Stommel M et al (2020) Tensor spines – a hyperstreamlines variant suitable for indefinite symmetric second-order tensors. In: 2020 IEEE Pacific visualization symposium (PacificVis), Tianjin, China, S. 106–110

    Google Scholar 

  95. Günther F, Stommel M (2020) Mesoscale surface structures in CFRP-metal-joints – aspects of design and manufacturing. Conference on future production of hybrid structures, 23. September 2020, Wolfsburg

    Google Scholar 

  96. Günther F, Bretz L, Jost H et al (2019) Herausforderungen im Entwicklungszyklus von einfachen (2D) zu komplexen (3D-) CFK-Hybridbauteilen mit thermoplastumspritzen Metalleinleger. Internationales Dresdner Leichtbausymposium, Dresden

    Google Scholar 

  97. Bretz L, Gärtner A, Häfner B et al (2020) Fiber orientation evaluation of intrinsically manufactured metal-CFRP hybrid structures by data fusion of pulsed phase thermography and laser light section (Im Druck). Proceedings of conference on future production of hybrid structures (FPHS 2020), web-conference, Wolfsburg (in press)

    Google Scholar 

  98. Berger D, Brabandt D, Bakir C et al (2017) Effects of defects in series production of hybrid CFRP lightweight components – detection and evaluation of quality critical characteristics. Measurement 95:389–394. https://doi.org/10.1016/j.measurement.2016.10.003

  99. Berger D, Zaiß M, Lanza G et al (2018) Predictive quality control of hybrid metal-CFRP components using information fusion. Prod Eng Res Devel 12:161–172. https://doi.org/10.1007/s11740-018-0816-1

    Article  Google Scholar 

  100. Summa J, Schwarz M, Herrmann HG Evaluating the severity of defects in a metal to CFRP hybrid-joint with in-situ passive thermography damage monitoring. In: Proceedings of the 5th International conference on integrity-reliability-failure, Porto, Portugal

    Google Scholar 

  101. Berger D, Lanza G (2016) Qualitätssicherung im Leichtbau. ZWF 4:178–182. https://doi.org/10.3139/104.111499

    Article  Google Scholar 

  102. Lanza G, Brabandt D (2012) Sustainable automated production of fiber reinforced plastics (FRP) through inline quality assurance. In: Seliger G, Kiliç SE (Hrsg) Towards implementing sustainable manufacturing. Proceedings of 10th global conference on sustainable manufacturing. CIRP, S 123–127

    Google Scholar 

  103. Brabandt D, Lanza G (2015) Data processing for an inline measurement of preforms in the CFRP-production. Procedia CIRP:269–274. https://doi.org/10.1016/j.procir.2015.06.048

  104. Brabandt D, Hettich S, Lanza G (2015) Messtechnik für die Qualitätssicherung von Carbonfaser-Preforms. Lightweight Des:20–25. https://doi.org/10.1007/s35725-015-0049-6

  105. Schwarz M (2019) Multimodale zerstörungsfreie Charakterisierung der Grenzflächen von Metall-CFK-Hybridstrukturen. Dissertation, Universität des Saarlandes/Fraunhofer IZFP

    Google Scholar 

  106. Chrysochoos A, Louche H (2000) An infrared image processing to analyse the calorific effects accompanying strain localisation. Int J Eng Sci:1759–1788. https://doi.org/10.1016/S0020-7225(00)00002-1

  107. Jegou L, Marco Y, Le Saux V et al (2013) Fast prediction of the Wöhler curve from heat build-up measurements on Short Fiber Reinforced Plastic. Int J Fatigue:259–267. https://doi.org/10.1016/j.ijfatigue.2012.09.007

  108. Wu D, Busse G (1998) Lock-in thermography for nondestructive evaluation of materialsÉvaluation non destructive de matériaux par thermographie à détection synchrone. Revue Générale de Thermique:693–703. https://doi.org/10.1016/S0035-3159(98)80047-0

  109. Palumbo D, de Finis R, Demelio GP et al (2017) Study of damage evolution in composite materials based on the Thermoelastic Phase Analysis (TPA) method. Compos Part B 117:49–60. https://doi.org/10.1016/j.compositesb.2017.02.040

    Article  Google Scholar 

  110. Berger D, Lanza G (2018) Development and application of eddy current sensor arrays for process integrated inspection of carbon fibre preforms. Sensors 18(4). https://doi.org/10.3390/s18010004

  111. Haefner B, Berger D (2019) Design, data analysis and measurement uncertainty evaluation of an eddy-current sensor array for in-process metrology of carbon fiber reinforced plastics. CIRP Ann 68:539–542. https://doi.org/10.1016/j.cirp.2019.04.091

    Article  Google Scholar 

  112. Joint Comittee for Guides in Metrology (2008) Evaluation of measurement data – guide to the expression of uncertainty in mesasurement (JCGM 100:2008), Bureau International des Poids et Mesures (BIPM), Sèvres, France

    Google Scholar 

  113. Verband der Automobilindustrie (2013) Band 5.1 Rückführbare Inline-Messtechnik im Karosseriebau, VDA-QMC, Berlin, Germany

    Google Scholar 

  114. Bradley D, Roth G (2007) Adaptive thresholding using the integral image. J Graph Tools 12:13–21. https://doi.org/10.1080/2151237X.2007.10129236

    Article  Google Scholar 

  115. Schwarz M, Schwarz M, Herter S et al (2019) Nondestructive testing of a complex aluminium-CFRP hybrid structure with EMAT and thermography. J Nondestruct Eval 38:35. https://doi.org/10.1007/s10921-019-0578-5

    Article  Google Scholar 

  116. Summa J, Grossmann F, Herrmann H-G (2020) Quantitative passive thermography for evaluation of fatigue damage in an intrinsic hybrid composite. Proceedings of the 4th international conference on hybrid materials, Karlsruhe, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Henning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henning, F. et al. (2021). Schalenförmige Hybridverbunde und Inserts. In: Fleischer, J. (eds) Intrinsische Hybridverbunde für Leichtbautragstrukturen. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62833-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62833-1_2

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62832-4

  • Online ISBN: 978-3-662-62833-1

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics