Skip to main content

Evolution der PCR – von der klassischen PCR zur digitalen PCR

  • Chapter
  • First Online:
Immunoassays

Zusammenfassung

Keine Technik hat die Molekularbiologie so nachhaltig geprägt wie die Polymerasekettenreaktion (Polymerase Chain Reaction, PCR), und nach wie vor ist sie die Grundlage für viele neue Techniken, die Einzug in die molekularbiologischen Labore halten. Die Anfänge der PCR gehen auf Arbeiten in den 1950er-, 1960er- und 1970er-Jahren zurück, in denen die Grundlagen des DNA-Aufbaus und der DNA-Replikation erarbeitet wurden. Die Entdeckung, Isolation und Nutzung einer thermostabilen DNA-Polymerase (Mullis et al. 1986, Saiki et al. 1988) und die Entwicklung der ersten Thermocycler in den 1980er-Jahren führten schließlich zu einer routinemäßigen Anwendung der PCR und ermöglichten dadurch den durchschlagenden Erfolg dieses neuen Verfahrens. 1993 erhielt Kary B. Mullis für seine Arbeiten den Nobelpreis für Chemie (zusammen mit Michael Smith, Bartlett und Stirling 2003). Die PCR gehört seit dieser Zeit zur „Grundausstattung“ jedes molekularbiologischen Labors und ermöglicht u. a. die gezielte Vervielfältigung, Detektion und Analyse von Nucleinsäuren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Bartlett, J.M. and D. Stirling, A short history of the polymerase chain reaction, in PCR protocols. 2003, Springer. p. 3–6.

    Chapter  Google Scholar 

  • Bustin, S.A., et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009. 55(4): p. 611–22.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Y., et al., Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLoS One, 2017. 12(8): p. e0181949.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao, Y., M.R. Raith, and J.F. Griffith, Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment. water research, 2015. 70: p. 337–349.

    Google Scholar 

  • Cochran, R.L., et al., Analysis of BRCA2 loss of heterozygosity in tumor tissue using droplet digital polymerase chain reaction. Human pathology, 2014. 45(7): p. 1546–1550.

    Google Scholar 

  • Coudray-Meunier, C., et al., A comparative study of digital RT-PCR and RT-qPCR for quantification of Hepatitis A virus and Norovirus in lettuce and water samples. International journal of food microbiology, 2015. 201: p. 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Dobnik, D., et al., Multiplex Quantification of 12 European Union Authorized Genetically Modified Maize Lines with Droplet Digital Polymerase Chain Reaction. Analytical Chemistry, 2015. 87(16): p. 8218–8226.

    Article  CAS  PubMed  Google Scholar 

  • Dobnik, D., et al., Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection. Sci Rep, 2016. 6: p. 35451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Network of GMO Laboratories (ENGL), Definition of Minimum Performance Requirements for Analytical Methods for GMO Testing. http://gmo-crl.jrc.ec.europa.eu/doc/MPR%20Report%20Application%2020_10_2015.pdf, 2015.

  • Gerdes, L., et al., Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomolecular Detection and Quantification, 2016. 7: p. 9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes, L., U. Busch, and S. Pecoraro, Digitale PCR – Erste Erfahrungen für die Analytik von gentechnischen Veränderungen in Lebensmitteln. Deutsche Lebensmittel-Rundschau, 2014. p. 406–411.

    Google Scholar 

  • Gürtler, P. and L. Gerdes, Digitale PCR. BIOspektrum, 2014. 20(6): p. 632–635.

    Article  Google Scholar 

  • Gürtler, P., et al., Genome Editing, in Schriftenreihe des LGL. 2019, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit: Erlangen.

    Google Scholar 

  • Hennekinne, J.-A., M.-L. De Buyser, and S. Dragacci, Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS microbiology reviews, 2012. 36(4): p. 815–836.

    Article  CAS  PubMed  Google Scholar 

  • Hindson, B.J., et al., High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem, 2011. 83(22): p. 8604–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huggett, J.F. and A. Whale, Digital PCR as a novel technology and its potential implications for molecular diagnostics. Clin Chem, 2013. 59(12): p. 1691–3.

    Article  CAS  PubMed  Google Scholar 

  • Huggett, J.F., et al., The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clinical Chemistry, 2013. 59(6): p. 892–902.

    Article  CAS  PubMed  Google Scholar 

  • Jones, G.M., et al., Digital PCR dynamic range is approaching that of real-time quantitative PCR. Biomolecular detection and quantification, 2016. 10: p. 31–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley, K., et al., Detection of methicillin-resistant Staphylococcus aureus by a duplex droplet digital PCR assay. Journal of clinical microbiology, 2013. 51(7): p. 2033–2039.

    Article  PubMed  PubMed Central  Google Scholar 

  • Köppel, R., et al., Duplex digital droplet PCR for the determination of apricot kernels in marzipan. European Food Research and Technology, 2020: p. 1–6.

    Google Scholar 

  • Last, A., et al., 613 Bailey RL, Holland MJ. 2013. Plasmid copy number and disease severity in naturally 614 occurring ocular Chlamydia trachomatis infection. J Clin Microbiol. 52(324): p. 615.

    Google Scholar 

  • Lievens, A., et al., Measuring Digital PCR Quality: Performance Parameters and Their Optimization. PLoS One, 2016. 11(5): p. e0153317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo, Y.D., et al., Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proceedings of the National Academy of Sciences, 2007. 104(32): p. 13116–13121.

    Article  CAS  Google Scholar 

  • Masago, Y., et al., Comparative evaluation of real-time PCR methods for human Noroviruses in wastewater and human stool. PloS one, 2016. 11(8): p. e0160825.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morisset, D., et al., Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One, 2013. 8(5): p. e62583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motoi, Y., et al., Digital PCR for determination of cytochrome P450 2D6 and sulfotransferase 1A1 gene copy number variations. Drug Discoveries & Therapeutics, 2017. 11(6): p. 336–341.

    Article  CAS  Google Scholar 

  • Mullis, K., et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. in Cold Spring Harbor symposia on quantitative biology. 1986. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Nixon, G., et al., Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus. Anal Chem, 2014. 86(9): p. 4387–94.

    Article  CAS  PubMed  Google Scholar 

  • Pecoraro, S., Digital Polymerase Chain Reaction (dPCR)–General Aspects and Applications, in DNA Techniques to Verify Food Authenticity, L.F.a.M.W. Malcolm Burns, Editor. 2019, Royal Society of Chemistry. p. 63–69.

    Google Scholar 

  • Pecoraro, S., et al., Overview and Recommendations for the Application of Digital PCR; EUR 29673 EN; Publications Office of the European Union: Luxembourg, 2019. JRC115736. https://ec.europa.eu/jrc/en/publication/overview-and-recommendations-application-digital-pcr, 2019.

  • Pfaffl, M.W., Real-time RT-PCR: neue Ansätze zur exakten mRNA Quantifizierung. BIOspektrum, 2004. 1(04): p. 92–95.

    Google Scholar 

  • Pinchuk, I.V., E.J. Beswick, and V.E. Reyes, Staphylococcal enterotoxins. Toxins, 2010. 2(8): p. 2177–2197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racki, N., et al., Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods, 2014. 10(1): p. 42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren, J., et al., A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food. PloS one, 2017. 12(3): p. e0173567.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saiki, R., et al., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988. 239(4839): p. 487–491.

    Article  CAS  PubMed  Google Scholar 

  • Taly, V., et al., Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clinical chemistry, 2013. 59(12): p. 1722–1731.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein, B. and K.W. Kinzler, Digital PCR. Proc Natl Acad Sci U S A, 1999. 96(16): p. 9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, B.G., et al., Digital PCR: a powerful new tool for noninvasive prenatal diagnosis? Prenatal Diagnosis: Published in Affiliation with the International Society for Prenatal Diagnosis, 2008. 28(12): p. 1087–1093.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Gürtler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gürtler, P., Pecoraro, S. (2023). Evolution der PCR – von der klassischen PCR zur digitalen PCR. In: Raem, A.M., Rauch, P. (eds) Immunoassays. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62671-9_7

Download citation

Publish with us

Policies and ethics